
Towards A Flexible Global Sensing Infrastructure

Chien-Liang Fok, Gruia-Catalin Roman and Chenyang Lu
Washington University in St. Louis
{liang, roman, lu}@wustl.edu

Abstract
Wireless sensor networks can potentially become larger,

more prevalent, and interconnected via the Internet, form-
ing a global sensing infrastructure that serves many users.
In order to realize this and maximize its utility, it is nec-
essary to develop a software architecture that enables new
components to be integrated, multiple applications to share
the same sensing substrate, and the integration of sensor and
IP networks. We propose one such architecture that en-
codes applications as malleable, platform-independent, high-
level mobile scripts. Multiple users are supported by allow-
ing these scripts to execute concurrently, while flexibility is
achieved by having them invoke platform-specific services.
Services provide reusable functional capabilities that may
vary across platforms and environmental conditions. They
are platform-specific and may be discovered and redeployed
on-demand at runtime. Service provision allows applications
to exploit whatever computational capabilities are available,
and new services to be added in response to changing ap-
plication needs, resource availability, or environmental con-
ditions. Our approach allows applications to function in di-
verse settings by employing dynamic rebinding of mobile
scripts to different services as they execute over extended in-
tervals across different types of networks.

1 Introduction
Wireless sensor networks (WSNs) consist of numerous

miniature wireless sensors embedded in the environment.
While they have been successfully used in the past, their full
potential has not been exploited for a variety of reasons. One
major reason is the lack of a flexible software architecture
that enables new technology integration, concurrent applica-
tion execution, and application flexibility. Existing software
for WSNs tends to be vertically integrated consisting of cus-
tom components that are not reusable, making it hard for
new applications to be developed. As WSNs become larger,
more heterogeneous, and integrated with the Internet, they
will form a complex and dynamic global sensing infrastruc-
ture (GSI) that renders vertical integration untenable. The
GSI will demand new software architectures that can serve
multiple transient users simultaneously, and unifies a hetero-
geneous and dynamic mix of networks with a wide range of
capabilities. This paper presents a new software architec-
ture that provides this using mobile scripts that are reactive,
service-centered, and platform independent. It provides an
integrated programming environment that simplifies applica-
tion development while still enabling the network to evolve
and applications to adapt.

The field of WSNs has quickly grown and matured over
the past few years. Much progress has been made address-
ing problems associated with meager resources (e.g., lim-
ited battery power, unreliable wireless networking, and node
failures), and the nature of WSN applications (e.g., software
autonomy and collaborative sensing). However, these indi-
vidual solutions often cannot be easily integrated, hindering
progress. Furthermore, new concerns are emerging due to
the changing nature of these networks from being small-
scale, homogeneous, and application-specific WSNs to be-
ing large-scale, heterogeneous, and general-purpose GSIs.
The heterogeneity of the GSI requires a standard commu-
nication interface. This is partially provided by the Sen-
sor Network Architecture (SNA) [5]. SNA offers a com-
mon link-level communication and discovery protocol for
WSNs, but does not address interface issues between sensor
and IP networks. We propose to build on SNA by providing
a cross-platform architecture that covers both sensor and IP
networks. The general-purpose and shared nature of future
GSIs requires networks to be re-programmable and able to
support multiple applications concurrently. The highly di-
verse and dynamic set of devices within a GSI requires ap-
plications to adapt to their execution context. We propose
to develop a novel reactive service-centered programming
model for such an environment.

As more WSNs are deployed for longer intervals, our en-
vironment will become saturated with multiple overlapping
WSNs forming a heterogeneous and continuously evolving
GSI. This heterogeneity is due to continuous improvements
in embedded devices and the current trend towards integrat-
ing micro-servers within the network. Micro-servers help
overcome the resource constraints of typical WSN nodes and
connect to the Internet allowing transient Internet users to
share the GSI. The sensors, micro-servers, and Internet col-
lectively form the GSI.

Two example applications supported by a GSI are global
supply chain monitoring and disaster scenario coordination.
In global supply chain monitoring, wireless sensors are at-
tached to each product that is loaded into cargo containers
with micro-servers that interface between the WSN and In-
ternet. The resulting system can serve many users simultane-
ously. For example, product owners can track their products,
shippers can track their containers, carriers can monitor their
vessel capacities, and security personnel can monitor the sen-
sors to ensure the products are not tampered with. Disas-
ter scenarios result in emergency situations that require a
tremendous amount of coordination. Unfortunately, in many
disasters, the fixed infrastructure has been destroyed, pre-



venting the use of cell phones and the Internet. In such a
situation, network flexibility is critical. For example, if an
office building catches fire, and the building’s fire detectors,
lights, and thermostats are part of the GSI, they could be
quickly reprogrammed to guide people out of the building.
Also, the building’s security system could be reprogrammed
to coordinate with the fire detectors and thermostats to direct
first responders to people in need. The ability to comman-
deer these nodes to perform tasks they were not originally
intended to perform requires dynamic reprogramming. The
fact that the building’s network is helping to evacuate people
and direct rescuers at the same time demonstrates the need
for an architecture that supports multiple concurrent applica-
tions. As the full capabilities of a GSI are better understood,
the public will demand more and better applications creat-
ing a significant gap between societal needs and our ability
to develop software that meets these needs. To counter this
gap, a new software architecture must be developed.

There are several systems related to integrating WSNs
with IP networks and forming a GSI. They include
Tenet [10], IrisNet [9], and SensorWeb [19]. Tenet is an ar-
chitecture that integrates WSNs with an IP network. Tenet
moves most of a user’s application onto the IP network where
it is more reliable and easier to program, leaving only simple
but well understood protocols to run within the WSN. Tenet
enhances network flexibility by using tasks, which are sent
by the IP nodes onto specific WSN nodes. Once installed,
tasks can no longer propagate. Both IrisNet and SensorWeb
focus on how to manage the data produced by a global sen-
sor network. Specifically, SensorWeb provides a web por-
tal that plots real-time sensor data on a map and provides
query primitives for accessing this data, while IrisNet uses
distributed databases to store sensor readings.

Our GSI architecture differs from these existing systems
by focusing on providing a unified framework that spans both
WSNs and IP networks. It does this by providing mobile
scripts that can adapt to changes in the environment by au-
tonomously moving to a different node, fetching a different
set of services, or otherwise changing their behavior. This of-
fers an additional level of adaptibility and flexibility, and is
complimentary to IrisNet and SensorWeb (i.e., IrisNet’s dis-
tributed database may be a service, and SensorWeb’s portal
may be an interface to the GSI). Our architecture, however,
contrasts with Tenet by pushing more functionality into the
WSN. Consider the burning building example. Using Tenet,
the fire detector that senses the fire will have to first notify its
master node on the IP network before a route discovery task
can be deployed. Our proposed architecture differs by allow-
ing a mobile script on the fire detector to fetch a route dis-
covery service in the neighborhood, reducing overhead while
increasing its responsiveness to environmental events.

Our proposed architecture addresses four problems that
need to be resolved in order to build and fully exploit a
GSI. The central problem is the difficulty in programming
applications. The architecture must provide a new program-
ming model and middleware to ease application develop-
ment. Second, existing WSN protocols and services are not
easily integrated due to inconsistent assumptions about the
underlying hardware and software platform. This prevents

code reuse, hindering progress by preventing new technolo-
gies from being integrated. The new architecture must ensure
that current and future WSN subsystems interoperate and be
easily integrated. It must also present a unified interface to
these components allowing users to write a single platform-
independent application that is able to run across a heteroge-
neous GSI. The third problem our architecture addresses is
the need to integrate WSNs with the Internet, and to support
multiple GSI-spanning applications simultaneously. Finally,
our architecture provides a mechanism for applications to au-
tonomously adapt to both an evolving platform and a chang-
ing environment.

Our solution structures applications as malleable,
platform-independent, high-level mobile scripts that dis-
cover and invoke platform-specific services. Scripts will fa-
cilitate meta-level programming, be designed to maintain the
structural and functional integrity of the application, and will
enable both application restructuring and migration. Ser-
vices provide reusable functional capabilities. In general,
they will be written using native code, discovered at runtime,
and distributed strategically within the sensor network or on
servers accessible via the Internet. Service provision will
enable an application to use computational resources that are
best suited for a specific device or network class, at that par-
ticular point in time and location, and in response to chang-
ing application needs or environmental conditions. Our ap-
proach will allow applications to function in diverse settings
by employing dynamic rebinding of programmer-specified
capabilities to different services as they execute over ex-
tended periods of time within the same network or across
multiple networks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed system architecture. Section 3
discusses the challenges of building such a system. Section 4
describes our approach. The paper ends with conclusions in
Section 5.

2 System Architecture
Future GSIs will be large scale, heterogeneous, and have

long-term deployments. They will consist of a wide variety
of devices with vastly different capabilities, and span both
WSNs and the Internet. GSIs form a powerful platform that
enables applications to exploit a wide range of sensing data
ranging from local data obtained from tiny embedded sen-
sors to global data obtained from satellites. To maximize
the system’s utility, its software architecture must be able
to support multiple concurrent applications owned by differ-
ent users that may span the entire GSI, and be able to effi-
ciently integrate new functionality as they are developed and
needed. In this section, we first discuss the physical archi-
tecture of the GSI followed by the software architecture.

2.0.1 Physical Architecture
The physical architecture consists of the sensor nodes,

micro-servers, and the Internet. An overview of it is shown
in Figure 1. The figure shows multiple sensor networks con-
nected to the Internet which contains databases for storing
applications and data, and user terminals for accessing the
system. Not shown are the sensing resources available on



Database Server

Internet

Figure 1. The physical architecture of the network

the Internet (e.g, data from weather satellites, seismographs,
street sensors, web cams, etc.) that will also be part of the
GSI. The physical architecture consists of two basic types of
networks: the resource-constrained WSNs, and the Internet.

Each WSN may be deployed and administered indepen-
dently. They primarily consist of tiny embedded sensors, but
also contain micro-servers capable of more computationally-
intensive tasks and interfacing with the Internet. They may
range in scale, consist of different hardware, and use dif-
ferent wireless technologies. Multiple sensor networks may
overlap. Since the system has long-term deployment and
must support multiple transient users, it is important to al-
low the network to physically evolve. As new sensors are
developed, integrating them within an existing GSI should
be straightforward. A changing environment may require
new sensor networks with different devices to be deployed
and existing ones to be dismantled. Continuous exposure to
the elements will cause sensor nodes to fail, requiring new
nodes to be deployed. Some sensor nodes may be mobile,
e.g., mounted on a car or person. All of this results in a
highly dynamic physical architecture.

The Internet provides a relatively reliable, static, and
resource-rich environment through which users can interact
with the GSI. It has servers that can process sensor data, and
databases for storing applications and data. The Internet also
allows application components located in one WSN to com-
municate with components located in other WSNs or on the
Internet itself. In some cases, an application may wish to
move to another WSN due to the mobility of a physical ob-
ject of interest. For example, in the supply chain monitoring
application, a container may be moved from a ship onto a
train, meaning the application tracking it may need to jump
from the ship’s WSN onto the train’s WSN. The Internet pro-
vides the physical means for this application migration to oc-
cur.

2.0.2 Software Architecture
The software architecture consists of user-defined mobile

scripts, services, and an execution engine. Applications are
written as a collection of mobile scripts. These scripts make
references to services that are dynamically bound at runtime.
The execution engine interprets the scripts and binds their
service references to the components that implement them.
If a required service is not locally available, the execution en-

gine finds a component that implements it and either fetches
and locally executes it or remotely executes it. If a particu-
lar service is not found, the execution engine may have to
compose multiple components together to achieve the de-
sired service. By dynamically binding services to the mobile
scripts, a user’s application is able to adapt to changes in its
context, and new services can be efficiently integrated. By
executing multiple mobile scripts simultaneously, the net-
work is able to support concurrent applications enhancing
the GSI’s utility.

Mobile scripts are written in a high-level language like
TinyScript [1], can be dynamically installed, and are able
to migrate across and execute on all nodes in the GSI. This
seamless integration of sensor and IP networks simplifies ap-
plication development but results in the mobile script expe-
riencing large changes in resource availability. The dynamic
binding of services allow the script to adapt to these changes.
In order minimize execution and migration overhead and al-
low these scripts to fit on highly constrained nodes, they must
be lightweight. In our proposed architecture, they consist
of a sequence of calls to high-level services and a minimal
amount of control code. However, some policy must be in
place for handling situations where a mobile script attempts
to migrate onto a node that does not have enough resources
to support it. This policy may be application-specific or net-
work wide and dynamic or static, but is enforced by the exe-
cution engine. Mobile scripts are the most dynamic compo-
nents of the GSI. They may quickly come and go based on
the presence of users and changes in the environment.

The execution engine plays a key role in our architec-
ture because it provides a foundation for mobile scripts. It
must be designed to span many generations of WSNs so that
an application need not be re-implemented each time a new
WSN or Internet technology is developed. This is achieved
by including a minimal amount of functionality within the
execution engine itself, and exporting as much as possible
into services. Functions likely to be included in the execu-
tion engine include the script scheduler and quality of service
enforcer, service discovery and binding, inter-script commu-
nication and coordination, and script migration. The execu-
tion engine may also provide mechanisms for composing and
decomposing scripts and services to achieve greater flexibil-
ity (e.g., enabling them to fit on even more highly resource-
constrained devices). The execution engine should be rel-
atively static. It can be occasionally updated through code
reversioning [12, 14], but should otherwise provide a stable
foundation for mobile scripts.

Services implement reusable functionality and are dy-
namically bound to scripts. Unlike services in a traditional
distributed computing, the services in our proposed archi-
tecture are not the same throughout the network. Instead,
they are tailored to the unique and current characteristics
of their execution environment. For example, a useful ser-
vice for structural health monitoring applications is the fast
Fourier transform (FFT). In a resource-deprived sensor node,
the FFT service may only partially compute the FFT locally,
exporting the majority of computation to a more powerful
device on the Internet. On the other hand, the FFT service
on an Internet PC may perform the entire FFT locally. Lo-



cation is a another context-sensitive service where scripts on
nodes outdoors use GPS while those indoors use an indoor
localization system [18, 13, 15, 4]. Another example is rout-
ing where a script on the Internet will use OSPF while one
running in a WSN may use MintRoute [21]. The details of
which service is used is hidden from the script, allowing it to
be platform-independent. Services are strategically deployed
across the GSI to enable the execution engine to efficiently
exploit them when they are needed. Services may be dynam-
ically installed and uninstalled, or remotely executed. They
are designed to be updated more frequently than the execu-
tion engine, but less than that of scripts. They should typi-
cally be implemented in native code to minimize overhead.

3 Challenges
There are many challenges involved in developing a GSI.

This section describes some of these challenges.
Application Concurrency. While supporting multiple

concurrent WSN applications has been investigated in the
past [22], they did not provide quality of service provisions
for each application. This is problematic when the applica-
tions conflict with each other, and is especially true in net-
works with extremely limited resources (e.g., one applica-
tion uses up so much memory and bandwidth that another
cannot run). A mechanism must be developed that guaran-
tees each application a minimum quality of service. Policies
may include traditional ones like admission control and pri-
ority levels, but may also include more radical ones that are
specific to our architecture like script reallocation (i.e., mov-
ing a script to a neighboring node with more resources), or
script morphing (i.e., changing the service bound to a script
to reduce its resource utilization).

Service Description. The reliance on service provision
entails developing new, compact, and flexible service speci-
fications. The spatiotemporal existence of the applications is
likely to foster the introduction of time and space concepts
into the scripting language with multiple notions of space co-
existing in a single application. For example, space may cor-
respond to a geographic area, a network, hop count region, or
nodes with certain application-defined attributes. Also, since
GSIs are dynamic, details of the local computing infrastruc-
ture may have to be exposed to the script.

Scripts must describe the types of services they require,
and the services must describe what they provide. A service-
description language must be created to ensure the require-
ments specified by the script can be matched to the services
that implement them. This language must be extensible and
expressive enough to allow automated service composition
to satisfy the requirements set forth by the scripts. For ex-
ample, in the disaster scenario, the script may require a ser-
vice that finds a safe exit route. Since such a service is
application-specific and is unlikely to be provided natively,
the middleware must compose several other services together
to achieve this service, or the user must design the scripts to
make use of whatever services are available. The the ser-
vice description language’s representation will likely have to
be heterogeneous. On the Internet, it may be implemented
in WSDL, while within a sensor network, it may be imple-
mented using primitive data types. This suggests the need

for a meta-specification language that is used by the script
programmer, but is decomposed into a network-specific rep-
resentation when the script enters the network.

Service Discovery. The limited resources on a typical
WSN node prevents them from holding a copy of every ser-
vice. Distributed service repositories must be created, and
a service discovery protocol must be provided. When a ser-
vice is required, the execution engine must find the code that
implements it using a service discovery protocol, and bind it
to the script. The binding can either be done using a remote
procedure call, or the code can be downloaded and executed
on the local node. One interesting question is whether the
services should be bound to a script or node. The answer
will likely depend on the type of service. Some services like
a simple data aggregation algorithm (e.g., average) may be
bound directly to a script and, hence, moved with the script
as it migrates. This may not always be desirable since it in-
creases migration overhead and may result in inefficient code
memory usage when the destination already has a copy of the
service. Other services like sending a message or reading a
sensor are inherently tied to hardware on a particular node
and hence should not be bound to a script. Regardless, once
the service is no longer needed, it must be disposable. This
should ideally be automatically handled by the execution en-
gine.

Device heterogeneity. Some services like sense are in-
herently network-specific. This is problematic because a
script may attempt to execute it on a node that does not have
the sensor and, thus, cannot implement the service. New
mechanisms must be developed to either prevent such a sce-
nario, or to gracefully handle them. The scenario can be
prevented by analyzing the services required by a script and
preventing it from migrating to a node that does not provide
all of the required services. The situation can be handled
more gracefully by trying to get the sensor reading from a
nearby node that has the sensor, and including a confidence
level with the sensor reading.

Inconsistent Resource Availability. Another problem
arises from the fact that scripts are mobile and the devices
in a GSI differ widely in resource availability. Specifically,
it is possible that a script may attempt to migrate onto a node
that is unable to hold it due to lack of memory. In such cir-
cumstances, there are several policies that can be enforced.
The simplest is to abort. This is undesirable because it may
make the application less reliable and complicate application
development. A more elegant approach is to have the script
automatically leave part of itself behind, or be able to tem-
porarily split into multiple fragments until it moves onto a
node with enough memory. A script may also drop unneces-
sary services, drop code that it will never execute again, or
de-allocate data memory that is no longer needed. If a script
is only briefly entering a more resource constrained network,
the execution engine may create a proxy script that enters the
network in place of the original script, and returns the result
to the original script when done. New protocols need to be
developed to provide such functionalities.

Basic service set. A key challenge in our architecture
is determining the appropriate boundary between high-level
platform-independent scripts and low-level platform-specific



services. Services should be general to support many appli-
cations, and yet be high-level to simplify application devel-
opment. Determining a basic set of services at the appropri-
ate level of abstraction is essential. This set of services in-
clude service discovery and binding, communication, script
migration, and script morphing.

Coordination. Since applications are expected to be
structured in terms of multiple mobile scripts, new coordi-
nation and restructuring mechanisms are needed. Scripts be-
longing to different applications will often have to share the
same resources. Allowing them to coordinate their resource
utilization is essential, especially if some applications have
higher priorities than others. Since the scripts are mobile and
volatile, a decoupled style of communication like those pro-
vided by shared memory and tuple spaces [8] is preferable.
New group communication schemes and coordination mod-
els are needed to ensure the scripts belonging to the same
application can effectively cooperate, and scripts belonging
to different applications do not conflict.

Event distribution A mobile script must be able to re-
act to changes in its context. This requires an event gener-
ation and distribution mechanism. The wide range of event
types, sources, priorities, and usage patterns is likely to lead
to a complex and heterogeneous event generation and distri-
bution system. Some events may be highly localized while
others may be distributed across significant distances; some
events may be generated only on demand through a sub-
scription system, others may be distributed to all applications
within some logical or geographic scope, and others may be
governed by application-specific rules.

4 Approach
Creating a GSI will require integrating a variety of Inter-

net and WSN systems. In general, they can be divided into
those that provide service discovery, and those that enable
script mobility and concurrency. On the IP network, the exe-
cution engine can be implemented by combining standard
Web Service technology [3] with a mobile agent middle-
ware like LIME [16] or Limone [6]. Web services provides
languages [17] for describing reusable services, and com-
ponents for registering and discovering them [20]. Mobile
agents provide strong script mobility where execution state is
maintained across migrations. This can potentially simplify
applications since a script need not restart each time it mi-
grates (it prevents the script from having to manually transfer
its state and having an initial case statement that determines
where the agent should start executing upon arrival at the
destination). Within sensor networks, a standard platform
like SNA [5] can be used to provide a common set of compo-
nents and services, and a framework to integrate them. It can
be integrated with a mobile agent technology for WSNs like
Agilla [7] to implement the GSI execution engine. The over-
all GSI system is similar to the Arch Rock Primer Pack [2],
in that it abstracts WSNs into web services that can be pro-
grammed using standard programming languages. However,
it goes one step further by providing web service-like func-
tionality to scripts within a WSN, and also offers the addi-
tional flexibility and utility gained through script mobility
and concurrent script execution.

WSN Gateway

Agilla
Agent

Limone 
TS

Agilla 
TS

AgimoneAgent

Limone 
TS

AgimoneAgent

Agilla 
TS

IP

Agilla 
TS

Limone 
Registry

WSN Gateway

Agilla
Agent

Agilla 
TS

Agilla
Agent

Agilla 
TS Agilla

Agent

Agilla 
TS

WSN 1 WSN 2

Figure 2. The Agimone system architecture

Our proposed GSI architecture draws upon previous expe-
rience developing Agimone [11], the first middleware sup-
porting mobile agent migrations between sensor networks
via the Internet. Agimone’s system architecture is shown
in Figure 2. It integrates Agilla and Limone. Both middle-
ware systems provide mobile agents as the basic units of ex-
ecution, and tuple space-based coordination [8]. A mobile
agent is an autonomous unit of execution that contains its
own state, and is able to migrate across nodes while main-
taining its state. A user implements a sensor network appli-
cation within an Agilla mobile agent. Using Agimone, this
mobile agent is able to discover other sensor networks and
migrate to them. This is useful when the agent is unable
to finish its task in one sensor network but can in another,
or when the agent’s task requires that it gathers data from
multiple sensor networks. For example, in the supply chain
monitoring scenario, a mobile agent may need to traverse the
Internet and multiple WSNs located on different ships look-
ing for a container containing a particular item.

While Agimone demonstrates the feasibility and useful-
ness of integrating WSNs with the Internet, it does not truly
integrate sensor and IP networks since it does not allow Ag-
illa agents to migrate onto the Internet; it only allows them to
pass through the Internet on their way to another WSN. Also,
it does not allow the agent to morph, meaning it may not be
able to migrate onto networks with fewer resources. GSI
goes beyond Agimone by providing a framework that cov-
ers both WSNs and the Internet. It allows the user to write
platform-independent scripts that react to changes in its en-
vironment. It is a service oriented architecture where mobile
scripts can incorporate services tailored to the particular ca-
pabilities of the local network, and can drop them when they
are no longer needed or can no longer function in the cur-
rent environment. This will enable new applications that are
more flexible and comprehensive than presently possible.



5 Conclusion
WSNs consisting of thousands of nodes are growing in-

creasingly sophisticated and diverse. As more of them are
deployed and connected to the Internet, they form a power-
ful global sensing infrastructure (GSI) that can offer sens-
ing capabilities far greater than what a single WSN can of-
fer. In order to accelerate GSI formation, a new software ar-
chitecture must be developed that enables independently de-
veloped software components to be easily integrated, multi-
application support, and application flexibility. We pro-
pose a software architecture that provides this via high-level
platform-independent mobile scripts that are dynamically
bound to low-level platform-dependent services. Applica-
tions are created as a collection of mobile scripts. Concur-
rent applications are supported by allowing multiple scripts
to execute on a node. Sensor and IP networks are unified
by allowing scripts to migrate seamlessly between the two
networks. Flexibility is achieved through script mobility and
dynamically binding platform-specific services to the scripts.
New components can be integrated in the form of additional
services. Applications can be incrementally upgraded to use
these new services by replacing their scripts. While there are
many challenges, such an architecture is needed to recon-
cile the disparity between the capabilities of existing WSN
software architectures, and the demands of future GSI appli-
cations.

Acknowledgment
This research is supported by the NSF under NOSS con-

tract CNS-0520220.

6 References
[1] http://www.cs.berkeley.edu/∼pal/mate-web/

files/tinyscript-manual.pdf.

[2] Arch rock primer pack. http://www.archrock.com/
downloads/datasheet/primerpack datasheet.
pdf.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services. Springer-Verlag, October 2003.

[4] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low
cost outdoor localization for very small devices. Tech-
nical Report 00-729, USC, April 2000.

[5] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui,
P. Levis, J. Polastre, S. Shenker, I. Stoica, G. Tolle, and
J. Zhao. Towards a sensor network architecture: Low-
ering the waistline. In Tenth Workshop on Hot Topics
in Operating Systems (HotOS X), June 12 2005.

[6] C.-L. Fok, G.-C. Roman, and G. Hackmann. A
Lightweight Coordination Middleware for Mobile
Computing. In Proc. of Coordination’04, pages 135–
151, February 2004.

[7] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid develop-
ment and flexible deployment of adaptive wireless sen-
sor network applications. In Proc. of ICDCS’05, pages
653–662. IEEE, June 2005.

[8] D. Gelernter. Generative Communication in Linda.
ACM Trans. on Programming Languages and Systems,
7(1):80–112, January 1985.

[9] P. Gibbons, B. Carp, Y. Ke, S. Nath, and S. Seshan.
Irisnet: An architecture for a worldwide sensor web.
IEEE Pervasive Computing, pages 22–33, October-
December 2003.

[10] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govin-
dan, B. Greenstein, A. Joki, D. Estrin, and E. Kohler.
The tenet architecture for tiered sensor networks. In
Proc. of SenSys ’06, pages 153–166, New York, NY,
USA, 2006. ACM Press.

[11] G. Hackmann, C.-L. Fok, G.-C. Roman, and C. Lu. Ag-
imone: Middleware support for seamless integration of
sensor and IP networks. In Lecture Notes in Computer
Science, volume 4026, pages 101–118, 2006.

[12] J. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In Proc. of SenSys’04, pages 81–94. ACM
Press, 2004.

[13] Y. Kwon, K. Mechitov, S. Sundresh, W. Kim, and
G. Agha. Resilient localization for sensor networks in
outdoor environments. In Proc. of ICDCS ’05, pages
643–652, 2005.

[14] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In Proc.
NSDI’04. USENIX, 2004.

[15] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust
distributed network localization with noisy range mea-
surements. In Proc. of Sensys’04, November 2004.

[16] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME:
A Middleware for Physical and Logical Mobility. In
Proc. of ICDCS’01, pages 524–533, April 2001.

[17] E. Newcomer. Understanding Web Services: XML,
WSDL, SOAP, and UDDI. Addison-Wesley, 1st edition,
May 2002.

[18] N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The cricket location-support system. In Mobile Com-
puting and Networking, pages 32–43, 2000.

[19] A. Santanche, S. Nath, J. Liu, B. Priyantha, and
F. Zhao. Senseweb: Browsing the physical world in
real time. In Proc. of IPSN’06, April 2006.

[20] UDDI-Organization. Uddi technical white paper.
http://www.uddi.org/pubs/Iru UDDI Technical White
Paper.pdf, 2000.

[21] A. Woo, T. Tong, and D. Culler. Taming the Underly-
ing Challenges of Reliable Multihop Routing in Sensor
Networks. In Proc. of SenSys’03, pages 14–27, 2003.

[22] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Sup-
porting concurrent applications in wireless sensor net-
works. In Proc. of SenSys ’06, pages 139–152, New
York, NY, USA, 2006. ACM Press.


