

Efficient Holistic Control over Industrial Wireless Sensor-Actuator Networks

Yehan Ma, Chenyang Lu Cyber-Physical Systems Laboratory

• 41,040+ wireless field networks

[Emerson]

• \$123 billion by 2021 [Forbes]

Courtesy: Emerson Process Management

Dependable Wireless Control System

Most of today's industrial wireless networks are for monitoring

Dependable wireless control requires

- Control performance
- Resiliency
- Energy efficiency

Holistic Control

- Close the loop between control and network
- Holistic controller manages both the physical plant and network based on states of plants and the network

Ma, Y., Gunatilaka, D., Li, B., Gonzalez, H., & Lu, C. (2018). Holistic cyber-physical management for dependable wireless control systems. ACM Transactions on Cyber-Physical Systems, 3(1), 3.

Motivation

- Traditional periodic control
 - \Box Low rate \rightarrow Low resiliency to interference
 - \Box High rate \rightarrow Unnecessary energy cost
 - \rightarrow Efficient rate-adaptation/event-triggered control
- Time-slotted multi-hop mesh WSAN
 - Lack of mechanism tailored for efficient control strategies
 - Run-time reconfiguration is challenging
- Simulation tools are of vital importance for wireless control
 Real WSAN dynamics are hard to simulate
 Real WSAN dynamics are hard to simulate
 - Running real industrial physical plant is extremely challenging

Contributions

- Holistic control with efficient control strategies
 - Rate adaptation
 - Self-triggered control
- > WSAN reconfiguration mechanisms
 - Support run-time adaptation for efficient holistic control
 - Target multi-hop mesh network
- Real-time network-in-the-loop simulator
 - Real WSAN testbed
 - Simulated physical plants and controllers
- Compare rate adaptation and self-triggered control

Efficient Holistic Control Framework

Control performance monitoring

Efficient control strategy \rightarrow Rate/Inter-transmission time

> Network reconfiguration mechanism

Control Performance Monitoring

- State error $\square ||x(t) reference state||$
- Control performance index: Lyapunov function V(x(t))
 □ V(x(t)) keeps decreasing → System is stable
 □ Value of V(x(t)) → upper bound of physical state error

Rate Adaptation

- Simplified of the rate adaptation algorithm
 - If Increase threshold → Sampling rate ↑ If Decrease threshold for a time interval → Sampling rate ↓

Self-triggered Control

Event trigger rule

\Box Stability index is specified by: S(t)

$$S(x_t) = V(x_{t_{k-1}})e^{-\gamma V(x_{t_{k-1}})\delta(t-t_{k-1})}$$

□ Ideal Lyapunov function $V(t) \le S(t)$

 $\Box \text{ Trigger when } V(t) \ge S(t)$

> Self triggered control

Predict when the trigger condition will be violated based on model

Low-power Wireless Bus (LWB)

- Glossy flooding
 - One to many
 - Constructive interference

$$\bigcap_{t} + \bigcap_{t} + \sum_{t} = \bigcap_{t} + \sum_{t}$$

Radio event driven

□ Fast (propagation delay < 10 ms in 100-node mesh network)

Low power wireless bus (LWB) network protocol

 \Box Maps all communication on fast Glossy floods \rightarrow many to many

Ferrari, F., Zimmerling, M., Thiele, L., & Saukh, O. Efficient network flooding and time synchronization with glossy. *In IPSN*, 2011. Ferrari, F., Zimmerling, M., Mottola, L., & Thiele, L. Low-power wireless bus. *In Sensys*, 2012.

Low-power Wireless Bus (LWB)

- > Advantages of LWB
 - 🗆 Fast
 - Topology independent
 - Suitable for network-wide adaptation

- Challenges of network design
 - Support reconfiguration of whole communication schedules
 - Recover from data loss during adaptation

Rate Adaptation: Network Design

> Network reconfiguration mechanism

□ All nodes store global static schedule (max rate)

E.g. S
$$f_{11}$$
 f_{21} f_{31} \cdots S f_{11} f_{21} f_{31} \cdots S f_{11} f_{21} f_{31} \cdots S f_{11} f_{21} f_{31} \cdots

Holistic controllers piggyback the updated rate with actuation packet, and flood them in their assigned slot

$$f_{11}: \frac{1}{T} Hz$$
 $f_{12}: \frac{1}{2T} Hz$ $f_{13}: \frac{1}{4T} Hz$

Every node receives updated rates and calculates its schedule locally using implicit scheduling (e.g., based on rate monotonic scheduling)

All nodes sleep at unassigned slots

Rate Adaptation: Packet Loss Recovery

If a node loses updated rate of loop i, it will continue to use latest rate it receives until another updated rate of loop i is received

The node recovers faster from packet loss if candidate rates share more common slots

- Candidate rate selection
 - Candidate rates should be harmonic

Self-triggered Control: Network Design

- > Network reconfiguration mechanism
 - □ All nodes store global static schedule (max rate)
 - Holistic controllers piggyback the predicted time till the next transmission with actuation packet, and flood them in their assigned slots
 - Every node sets up timers for each flow

Problem: If a node fails to receive the predicted time till the next transmission, it may wake up at the wrong time and become unsynchronized with other nodes forever Node I

Solution: If a node loses inter-transmission time of a loop, it should re-awake at the highest rate until another actuation packet of this loop is received

WCPS-RT for Hybrid Simulation

Experimental Settings

 Physical plant and controller
 Up to five 4-state load positioning plants

3- floor WSAN@WUSTL
 70 TelosB motes

Normal Condition

RA and ST have similar control performance to fixed 1 Hz sampling
 while incurring over 40% fewer energy consumption in the network!
 ST is more aggressive in energy saving than RA

Interference generated by WiFi

RA and ST have similar control performance to fixed 1Hz sampling
 Higher energy cost due to recovery, but still lower than 1 Hz sampling
 ST consumes more energy than RA, due to packet loss recovery

Under Physical Disturbance

- > Disturbance: constant bias of actuators
- Performance over the entire experiments

RA and ST have similar control performance to fixed 1Hz sampling
 Energy consumption reduction of more than 30%

Under Physical Disturbance

During the disturbance (120s – 180s)

ST performs worse than RA under disturbance
 Longer inter-transmission interval -> slow responsive to disturbance

Conclusion

- Holistic control enhances efficiency and resiliency of wireless control systems
- Incorporate two efficient holistic control designs
 Rate Adaptation (RA)
 Self-Triggered control (ST)

> Novel network reconfiguration mechanisms based on LWB

- Hybrid wireless control experiments based on WCPS-RT
 D BA and ST affen advantages in control particulation of the second official se
 - RA and ST offer advantages in control performance and efficiency
 - ST is less efficient than RA under network interference due to loss recovery
 - ST can be less responsive to physical disturbances due to predicted transmission time