

Efficient Holistic Control over Industrial Wireless Sensor-Actuator Networks

Yehan Ma, Chenyang Lu Cyber-Physical Systems Laboratory

• 41,040+ wireless field networks

[Emerson]

Courtesy: Emerson Process Management

Dependable Wireless Control System

Most of today's industrial wireless networks are for monitoring

Dependable wireless control requires

- Control performance
- **Resiliency**
- **Energy efficiency**

- Close the loop between control and network
- \triangleright Holistic controller manages both the physical plant and network based on states of plants and the network

Ma, Y., Gunatilaka, D., Li, B., Gonzalez, H., & Lu, C. (2018). Holistic cyber-physical management for dependable wireless control systems.ACM Transactions on Cyber-Physical Systems, 3(1), 3.

Motivation

- \triangleright Traditional periodic control
	- \Box Low rate \rightarrow Low resiliency to interference
	- \Box High rate \rightarrow Unnecessary energy cost
	- \rightarrow Efficient rate-adaptation/event-triggered control
- \triangleright Time-slotted multi-hop mesh WSAN
	- \Box Lack of mechanism tailored for efficient control strategies
	- \Box Run-time reconfiguration is challenging
- \triangleright Simulation tools are of vital importance for wireless control \Box Real WSAN dynamics are hard to simulate \Box Running real industrial physical plant is extremely challenging

Contributions

- \triangleright Holistic control with efficient control strategies
	- \Box Rate adaptation
	- **□** Self-triggered control
- \triangleright WSAN reconfiguration mechanisms
	- **□** Support run-time adaptation for efficient holistic control
	- \Box Target multi-hop mesh network
- \triangleright Real-time network-in-the-loop simulator
	- **Q** Real WSAN testbed
	- \Box Simulated physical plants and controllers
- Compare rate adaptation and self-triggered control

Efficient Holistic Control Framework

Control performance monitoring

Efficient control strategy \rightarrow Rate/Inter-transmission time

\triangleright Network reconfiguration mechanism

Control Performance Monitoring

- State error \Box $||x(t) -$ reference state||
- \triangleright Control performance index: Lyapunov function $V(x(t))$ \Box $V(x(t))$ keeps decreasing \rightarrow System is stable \Box Value of $V(x(t)) \rightarrow$ upper bound of physical state error

Rate Adaptation

- Simplified of the rate adaptation algorithm
	- **If** *Increase threshold → Sampling rate ↑* **If** *Decrease threshold for a time interval → Sampling rate ↓*

Self-triggered Control

Event trigger rule

G Stability index is specified by: $S(t)$

$$
S(x_t) = V(x_{t_{k-1}})e^{-\gamma V(x_{t_{k-1}})\delta(t-t_{k-1})}
$$

□ Ideal Lyapunov function $V(t)$ ≤ $S(t)$

 \Box Trigger when $V(t) \geq S(t)$

\triangleright Self triggered control

 \Box Predict when the trigger condition will be violated based on model

Low-power Wireless Bus (LWB)

- Glossy flooding
	- \Box One to many
	- \Box Constructive interference

$$
\bigoplus_{\mathbf{P} \text{odd square divisor}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{odd square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{odd square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{P} \leftarrow \bigoplus_{\mathbf{P} \text{even square}} \mathbf{
$$

Radio event driven

 \Box Fast (propagation delay \leq 10 ms in 100-node mesh network)

 \triangleright Low power wireless bus (LWB) network protocol

 \Box Maps all communication on fast Glossy floods \rightarrow many to many

Ferrari, F., Zimmerling, M., Thiele, L., & Saukh, O. Efficient network flooding and time synchronization with glossy. *In IPSN*, 2011. Ferrari, F., Zimmerling, M., Mottola, L., & Thiele, L. Low-power wireless bus. *In Sensys*, 2012.

Low-power Wireless Bus (LWB)

- \triangleright Advantages of LWB
	- \Box Fast
	- □ Topology independent
	- □ Suitable for network-wide adaptation

- \triangleright Challenges of network design
	- \Box Support reconfiguration of whole communication schedules
	- \Box Recover from data loss during adaptation

Rate Adaptation: Network Design

 \triangleright Network reconfiguration mechanism

 \Box All nodes store global static schedule (max rate)

$$
\textbf{E.g.} \quad \begin{array}{c|c|c|c|c|c|c|c} \mathsf{s} & \mathsf{f}_{11} & \mathsf{f}_{21} & \mathsf{f}_{31} & \cdots & \mathsf{s} & \mathsf{f}_{11} & \mathsf{f}_{21} & \mathsf{f}_{31} & \mathsf{f}_{31} & \cdots \\ \hline & & & & & 2\mathsf{T} & & & 3\mathsf{T} & & & \mathsf{\ddots} & \mathsf{\ddots} \\ \end{array}
$$

 \Box Holistic controllers piggyback the updated rate with actuation packet, and flood them in their assigned slot

$$
f_{11}: \frac{1}{T} Hz
$$
 $f_{12}: \frac{1}{2T} Hz$ $f_{13}: \frac{1}{4T} Hz$

 \Box Every node receives updated rates and calculates its schedule locally using implicit scheduling (e.g., based on rate monotonic scheduling)

All nodes sleep at unassigned slots

Rate Adaptation: Packet Loss Recovery

If a node loses updated rate of loop i , it will continue to use latest rate it receives until another updated rate of loop i is received

 \Box The node recovers faster from packet loss if candidate rates share more common slots

- \triangleright Candidate rate selection
	- \Box Candidate rates should be harmonic

Self-triggered Control: Network Design

- \triangleright Network reconfiguration mechanism
	- \Box All nodes store global static schedule (max rate)
	- \Box Holistic controllers piggyback the predicted time till the next transmission with actuation packet, and flood them in their assigned slots
	- \Box Every node sets up timers for each flow

Problem: If a node fails to receive the predicted time till the next transmission, it may wake up at the wrong time and become unsynchronized with other nodes forever Node 1

Solution: If a node loses inter-transmission time of a loop, it should re-awake at the highest rate until another actuation packet of this loop is received

WCPS-RT for Hybrid Simulation

Experimental Settings

 \triangleright Physical plant and controller \Box Up to five 4-state load positioning plants

▶ 3- floor WSAN@WUSTL \Box 70 TelosB motes

Normal Condition

 \triangleright RA and ST have similar control performance to fixed 1 Hz sampling \triangleright while incurring over 40% fewer energy consumption in the network! ST is more aggressive in energy saving than RA

Interference generated by WiFi

RA and ST have similar control performance to fixed IHz sampling Higher energy cost due to recovery, but still lower than I Hz sampling ST consumes more energy than RA, due to packet loss recovery

Under Physical Disturbance

- Disturbance: constant bias of actuators
- \triangleright Performance over the entire experiments

 \triangleright RA and ST have similar control performance to fixed Hz sampling \triangleright Energy consumption reduction of more than 30%

Under Physical Disturbance

During the disturbance $(120s - 180s)$

ST performs worse than RA under disturbance Longer inter-transmission interval \rightarrow slow responsive to disturbance

Conclusion

- \triangleright Holistic control enhances efficiency and resiliency of wireless control systems
- \triangleright Incorporate two efficient holistic control designs \Box Rate Adaptation (RA) G Self-Triggered control (ST)

 \triangleright Novel network reconfiguration mechanisms based on LWB

- Ø Hybrid wireless control experiments based on WCPS-RT
	- **□ RA and ST offer advantages in control performance and efficiency**
	- **□ ST** is less efficient than RA under network interference due to loss recovery
	- \Box ST can be less responsive to physical disturbances due to predicted transmission time