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Industrial IoT for Industrial Internet

• 12.9+ billion hours 
operating experience

• 41,040+ wireless field 
networks

[Emerson]

• $123 billion by 2021
[Forbes]

Courtesy:	Emerson	Process	Management

Offshore Onshore
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Dependable wireless control requires
• Control performance
• Resiliency
• Energy efficiency

Most of today’s industrial wireless 
networks are for monitoring

2



Holistic Control

Ø Close the loop between control and network

Ø Holistic controller manages both the physical plant and network
based on states of plants and the network
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Ma, Y., Gunatilaka, D., Li, B., Gonzalez, H., & Lu, C. (2018). Holistic cyber-physical management for 
dependable wireless control systems.ACM Transactions on Cyber-Physical Systems, 3(1), 3.



Motivation
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Ø Traditional periodic control
q Low rateà Low resiliency to interference

q High rateà Unnecessary energy cost

à Efficient rate-adaptation/event-triggered control

Ø Time-slotted multi-hop mesh WSAN
q Lack of mechanism tailored for efficient control strategies

q Run-time reconfiguration is challenging

Ø Simulation tools are of vital importance for wireless control
q Real WSAN dynamics are hard to simulate

q Running real industrial physical plant is extremely challenging



Contributions
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Ø Holistic control with efficient control strategies
q Rate adaptation

q Self-triggered control

Ø WSAN reconfiguration mechanisms
q Support run-time adaptation for efficient holistic control

q Target multi-hop mesh network

Ø Real-time network-in-the-loop simulator 
q Real WSAN testbed
q Simulated physical plants and controllers

Ø Compare rate adaptation and self-triggered control



Efficient Holistic Control Framework
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Physical Disturbance

Wireless Interference

Ø Control performance monitoring

Ø Efficient control strategyà Rate/Inter-transmission time

Ø Network reconfiguration mechanism



Control Performance Monitoring
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Ø Stability

Ø State error
q 𝑥 𝑡 − reference	state

Ø Control performance index: Lyapunov function 𝑉(𝑥(𝑡))
q 𝑉 𝑥(𝑡) keeps decreasing à System is stable
q Value of 𝑉 𝑥(𝑡) à upper bound of physical state error



Rate Adaptation
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If Increase threshold
→ Sampling rate ↑ 

If Decrease threshold for a time interval
→ Sampling rate ↓

𝑉(
𝑡)

𝑡

Increase threshold

Decrease threshold

Ø Simplified of the rate adaptation algorithm

Sampling rate ↑

Sampling rate ↓



Self-triggered Control
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Ø Event trigger rule

q Stability index is specified by: 𝑆(𝑡)

q Ideal Lyapunov function 𝑉(𝑡) ≤ 𝑆(𝑡)

q Trigger when 𝑉 𝑡 ≥ 𝑆 𝑡

Ø Self triggered control
q Predict when the trigger condition will be violated based on model

𝑉(
𝑡)

𝑡

𝑆(𝑡)



Low-power Wireless Bus (LWB)
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Ø Glossy flooding
q One to many

q Constructive interference

q Radio event driven

q Fast (propagation delay < 10 ms in 100-node mesh network)

Ø Low power wireless bus (LWB) network protocol
q Maps all communication on fast Glossy floodsà many to many

Ferrari, F., Zimmerling, M., Thiele, L., & Saukh, O. Efficient network flooding and time synchronization 
with glossy. In IPSN, 2011.  
Ferrari, F., Zimmerling, M., Mottola, L., & Thiele, L. Low-power wireless bus. In Sensys, 2012.

𝑡 + 𝑡 = 𝑡



Low-power Wireless Bus (LWB)
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Ø Advantages of LWB
q Fast

q Topology independent

q Suitable for network-wide adaptation

Ø Challenges of network design
q Support reconfiguration of whole communication schedules

q Recover from data loss during adaptation



Rate Adaptation: Network Design
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Ø Network reconfiguration mechanism
q All nodes store global static schedule (max rate)

E.g.

q Holistic controllers piggyback the updated rate with actuation
packet, and flood them in their assigned slot
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q Every node receives updated rates and calculates its schedule locally
using implicit scheduling (e.g., based on rate monotonic scheduling)

• All nodes sleep at unassigned slots
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Rate Adaptation: Packet Loss Recovery
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q The node recovers faster from packet loss if candidate rates share
more common slots

Ø Candidate rate selection
q Candidate rates should be harmonic

If a node loses updated rate of loop 𝑖, it will continue to use latest
rate it receives until another updated rate of loop 𝑖 is received
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Self-triggered Control: Network Design
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Ø Network reconfiguration mechanism

q All nodes store global static schedule (max rate)

q Holistic controllers piggyback the predicted time till the next 
transmission with actuation packet, and flood them in their assigned
slots

q Every node sets up timers for each flow

• All nodes sleep at inactive slots
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Self-Triggered Control: Packet Loss Recovery
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Solution: If a node loses inter-transmission time of a loop, it should
re-awake at the highest rate until another actuation packet of this
loop is received

Problem: If a node fails to receive the predicted time till the next 
transmission, it may wake up at the wrong time and become 
unsynchronized with other nodes forever

f11S f11S... f11S... f11S f11S... ... ...
t0 T 2T 3T 4T

f11S f11S... f11S... f11S f11S... ... ...
t0 T 2T 3T 4T

f11S f11S... f11S... f11S f11S... ... ...
t0 T 2T 3T 4T

Node 1

Node 2

Node 3

1T

1T

1T
Last: 2T

2T

2T

2T

2T

2T

2T



WCPS-RT for Hybrid Simulation
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WCPS-RT: Hybrid Simulations
Ø real wireless networks + simulated 

physical plants
Ø capture wireless dynamics that are 

hard to simulate accurately
Ø leverage simulation support for 

controllers and plants. 

Wireless Cyber-Physical Simulator 
(WCPS)
Ø MATLAB/Simulink
Ø TOSSIM
Ø wcps.cse.wustl.edu

Li, B., et. al, realistic case studies of wireless 
structural control. In ICCPS, 2013d12
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Experimental Settings
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Ø Physical plant and controller
q Up to five 4-state load

positioning plants

Ø 3- floor WSAN@WUSTL
q 70 TelosB motes
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Control performance metric:

Ø RA and ST have similar control performance to fixed 1 Hz sampling
Ø while incurring over 40% fewer energy consumption in the network!

Ø ST is more aggressive in energy saving than RA

Ø RA: Rate Adaptation
Ø ST: Self-Triggered control
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Under Wireless Interference

Ø RA and ST have similar control performance to fixed 1Hz sampling
Ø Higher energy cost due to recovery, but still lower than 1 Hz sampling 

Ø ST consumes more energy than RA, due to packet loss recovery 

Interference generated by WiFi
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Ø Disturbance: constant bias of actuators
Ø Performance over the entire experiments
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Under Physical Disturbance

Ø RA and ST have similar control performance to fixed 1Hz sampling
Ø Energy consumption reduction of more than 30%
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Ø During the disturbance (120s – 180s)

Under Physical Disturbance
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Ø ST performs worse than RA under disturbance
Ø Longer inter-transmission interval à slow responsive to disturbance



Conclusion
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Ø Holistic control enhances efficiency and resiliency of wireless 
control systems

Ø Incorporate two efficient holistic control designs
q Rate Adaptation (RA)
q Self-Triggered control (ST)

Ø Novel network reconfiguration mechanisms based on LWB

Ø Hybrid wireless control experiments based on WCPS-RT
q RA and ST offer advantages in control performance and efficiency
q ST is less efficient than RA under network interference due to loss 

recovery
q ST can be less responsive to physical disturbances due to predicted 

transmission time


