
Agimone: Middleware Support for Seamless
Integration of Sensor and IP Networks

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Department of Computer Science and Engineering, Washington University in St.
Louis, St. Louis MO 63130-4899, USA

Abstract. The scope of wireless sensor network (WSN) applications
has traditionally been restricted by physical sensor coverage and lim-
ited computational power. Meanwhile, IP networks like the Internet offer
tremendous connectivity and computing resources. This paper presents
Agimone, a middleware layer that integrates sensor and IP networks as
a uniform platform for flexible application deployment. This layer allows
applications to be deployed on the WSN in the form of mobile agents
which can autonomously discover and migrate to other WSNs, using
a common IP backbone as a bridge. Agimone is the first system that
allows mobile agents to migrate between sensor and IP networks. It fa-
cilitates data sharing between WSNs and the IP network through remote
tuple space operations, allowing sensors to easily defer expensive compu-
tations to more-powerful devices. We demonstrate the expressiveness of
Agimone’s programming model by examining a prototype cargo-tracking
application. We also provide an empirical evaluation that demonstrates
the efficiency of Agimone using two WSNs consisting of Mica2 motes
connected by an IP network.

1 Introduction

Wireless sensor networks (WSNs) consist of tiny sensors embedded within the
environment. Many applications require that sensor nodes be deeply embedded
in areas where they are difficult to physically access, such as scattered in forests,
making it is impractical to physically gather the nodes in order to collect data or
deploy new applications. This necessitates WSN systems in which the nodes op-
erate for very long periods of time without physical access. Thus, data collection
and application deployment is done over wireless networks. These long system
lifetimes also mandate the flexibility to adapt to changing user requirements
without completely reprogramming the sensors.

However, typical WSN platforms often lack sufficient support for flexible
application deployment. For example, the TinyOS [1] operating system hard-
wires software components. Once deployed, application behavior can only be
marginally tweaked by changing specific parameters defined prior to deployment.
To complicate matters, the sensors’ power consumption must be very low so that
they can be deployed for months or even years without battery replacement. This
requires that memory and other computational resources be scarce, and radio



range and reliability be sacrificed [2]. These limitations impose severe restrictions
on the complexity and scope of WSN applications.

Many of these restrictions can be eased by logically combining multiple, phys-
ically disconnected WSNs using a common IP network. For example, WSNs can
be used for cargo tracking and monitoring by attaching sensors to individual
cargo containers. However, containers are frequently too far apart to be covered
by a single WSN, since they are housed in separate warehouses and eventually
relocated by boat or rail. Thus, the sensors form multiple independent WSNs
which are unable to directly communicate with each other. The utility of the
cargo tracking application would greatly increase if the user could issue a query
— such as searching the containers for a specific item — simultaneously to all
of these containers, even though their WSNs are not physically connected.

PCs with attached WSN gateways, or embedded devices like Stargate [3],
can act as gateways between the IP network and their respective WSNs. By
coordinating these disjoint networks to act as one logical network, sophisticated
WSN applications can be developed. This way, thousands of nodes located in
clusters around the world can collaborate autonomously on a single task.

However, communication and coordination between these networks is a com-
plex task, since WSNs are constantly forming and reshaping as the application
evolves. Hence, WSN nodes must be able to determine the availability of other
WSNs at run-time. Further, agent transactions across hosts should not be af-
fected by temporal disconnections and other short-term communication failures.
For these WSN applications to be useful to clients on the IP network, application
developers must be able to channel data between devices on the IP network and
nodes in the WSNs in a simple and straightforward manner.

Middleware aims to meet these needs, providing high-level programming con-
structs that greatly simplify WSN application development and increase utility.
To address the limitations of existing WSN middleware systems, we have de-
veloped Agilla [4], a middleware for wireless sensors. Limone [5], a lightweight
middleware for communication and coordination over IP networks, provides a
similar programming model and benefits to devices ranging from PDAs to desk-
top computers. Both middleware use a mobile agent-based paradigm, where
programs are composed of agents that can migrate across nodes.

Though these middleware offer similar programming models, they partition
the application into two sets of distinct, incompatible APIs and data struc-
tures. This discrepancy is not limited to these two middleware platforms. WSN
operating systems like TinyOS offer such different APIs and capabilities from
general-purpose operating systems like Windows and Linux, that the need for
two incompatible development platforms is inevitable. Traditionally, developers
have been forced to manually develop a translation layer for each application
that crossed middleware boundaries, a tedious and error-prone procedure.

The main contribution of this paper is providing a general-purpose model
which WSN devices can use to exploit the vast computational resources, includ-
ing other WSNs, found in IP networks such as the Internet. We have developed
Agimone, a thin and reusable integration layer between the Agilla and Limone



middleware, which facilitates agent interactions that cross middleware bound-
aries. In Section 2, we discuss the shortcomings of the state-of-the-art and explain
the motivation behind our general-purpose integration layer. Section 3 provides a
brief overview of the programming models used by Agilla and Limone. Section 4
describes Agimone’s architecture. Section 5 presents a cargo tracking application
that highlights the capabilities and expressiveness of Agimone. A performance
evaluation is provided in Section 6. We discuss related middleware systems in
Section 7. Finally, we conclude in Section 8.

2 Problem Statement

As the number and size of WSN deployments increase, so does the capacity
for sophisticated WSN applications. This potential remains largely untapped
due to the difficulty in distributing and coordinating applications across WSN
boundaries. In this section, we discuss how this potential can be realized using
a middleware system that integrates IP networks and WSNs.

2.1 Cargo Tracking: A Motivating Application

Consider the problem of cargo tracking. 7 million cargo containers arrive an-
nually into the United States, making it impossible to manually inspect every
container. Instead, each shipping container can be equipped with a sensor, which
will form a WSN with the other sensors and monitor the containers’ contents.
These sensors need to be accessed by many different types of users — such
as customs agent, shipping companies, and customers — who have different
and evolving requirements. It is impossible to predict all of these users’ needs
ahead-of-time, and so deploying a single monolithic application on each sensor
is infeasible. Mobile agents are invaluable for this scenario. Each authorized user
can deploy custom mobile agents to query the sensors on the containers.

However, the limited radio range of individual sensors forces WSNs to form
physically-localized clusters. If we rely solely on the sensors’ radios, users must
interact individually with each of these clusters. This requirement is unreason-
able and greatly limits the sophistication of WSN applications. Instead, the
current state-of-the-art is to deploy base stations in each cluster. These base
stations are connected together using a common IP network. This provides an
infrastructure which WSN applications can exploit for inter-WSN interactions.
It also provides a means for sensors to interact with clients on the IP network.

2.2 Challenges

Though these capabilities are essential, they are difficult to satisfy. The sensors
that populate WSNs have vastly different capabilities from the devices connected
to the IP network, preventing the deployment of a uniform software layer across
all devices. Today, complex WSN applications consist of separate software sup-
port platforms for WSNs and the IP network. Application-specific software is



Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migrate

remote 
access

Tuple Space

Fig. 1. The Agilla Architecture

A
Q

L

Mobile Host 1 Mobile Host 2

migrate

remote 
access

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

Fig. 2. The Limone Architecture

used to pass messages and translate queries between these two classes of devices.
However, writing this support layer requires programming experience with both
types of devices. Also, this layer must often be modified and redeployed when
application features or protocols change. This is unacceptable for applications
which have a constantly-evolving set of capabilities, like cargo tracking.

In this work, we present a middleware platform that supports seamless inte-
gration of WSNs and IP networks into a uniform software platform. Our middle-
ware’s services facilitate the development of WSN applications which exploit the
IP network as a resource for computation and communication. Mobile agents in
a WSN are provided a list of all other WSNs attached to the same IP network.
Agents can autonomously migrate over the IP network to any of the WSNs in
this list. Finally, we provide a common data space where devices on the IP net-
work and WSNs can share messages and data. These services offer application
developers a straightforward yet powerful programming model for implementing
complex WSN applications, like the cargo tracking application described above.

3 Background

This section provides a brief overview of the programming models offered by Ag-
illa and Limone. More details on the implementation are available in [4] and [5].

3.1 Agilla

Agilla programs are mobile agents that coordinate through tuple spaces. Agilla’s
architecture is shown in Figure 1. Each agent is hosted on a virtual machine with
dedicated instruction and data memory. An agent may execute special instruc-
tions that allow it to interact with the environment and move across nodes.
Multiple agents can coexist on a node. Agilla provides agents with local data
storage in the form of a heap and operand stack. Agilla agents use a stack-
based architecture and are programmed in a bytecode language based on that
of Maté [6], but tailored to the mobile agent paradigm. Like Maté, most Agilla
instructions fit in a single byte. Agilla is available for Mica2, MicaZ, and Tyn-
dall25 nodes and is distributed through TinyOS’ source respository. See Agilla’s
website [7] for more details.



Agilla’s tuple spaces offer a lightweight shared data space where the datum
is a tuple that is accessed via pattern matching. This allows one agent to insert
a tuple containing data (such as a sensor reading) and another to later retrieve
it without the two knowing each other, thus achieving a high level of decoupling.
Unlike messages passed over sockets, tuples placed in a tuple space survive tem-
poral disconnections, which frequently occur due to node mobility or unreliable
links. Tuple spaces offer many of the same programming benefits as shared data
systems, but with far less message-passing.

Each sensor in the WSN has a sin-
1: pushn mrk // string “mrk”
2: pushcl 15 // integer 15
3: pushc 2 // length of tuple
4: out // out(<15, “mrk”>)

Fig. 3. Agilla out Code Snippet

1: pushn mrk // string “mrk”
2: pusht VALUE // type VALUE (integer)
3: pushc 2 // length of template
4: rd // rd(<VALUE, “mrk”>)

Fig. 4. Agilla rd Code Snippet

gle local tuple space. Data is stored
in the form of fields; tuples containing
one or more fields can be added to the
tuple space using the out primitive.
rd and in operations respectively re-
move and copy tuples from a tuple
space; these operations are parame-
terized by templates that specify the
forms of matching tuples. In Agilla,
tuple and template fields contain one
of a handful of well-known 16-bit data
types (integer, string, sensor reading,
etc.). Alternatively, a template’s field
may contain a type (e.g., VALUE or
STRING) rather than a specific value. This indicates that any value of the corre-
sponding type is acceptable. The code snippets in Figures 3 and 4 demonstrate
the out and rd operations, respectively.

The rd or in operations block until a matching tuple is available. Agents may
also perform probing (non-blocking) tuple removals and copies using a different
set of primitives. Remote tuple space primitives manipulate tuple spaces residing
on remote sensors. Finally, Agilla offers a reaction mechanism, where a piece of
code is executed when a specified type of tuple is placed in the local tuple space.
These operations are described in further detail in [4].

Agilla agents may move or clone onto other hosts in the WSN using either
weak or strong migration operations. Weak migrations include only the agent’s
code, so any computations must restart from the beginning on the new host.
Strong migrations include computational state as well as code, so computations
can resume after the agent is migrated. Because Agilla agents run on top of
a virtual machine, agents can migrate between devices of different hardware
architectures, provided that the radios are compatible.

3.2 Limone

Limone provides a similar agent-based programming model using tuple spaces
for inter-agent communication. Its architecture is shown in Figure 2. Limone sup-
ports the same primitive tuple space operations as Agilla, as well as an analogous
reaction mechanism. However, each Limone agent has its own dedicated tuple



space, whereas (due to memory limitations) all Agilla agents on a single host
share one tuple space. Limone also provides a pluggable device discovery mech-
anism, where each agent-specified profile is automatically propagated to other
interested agents as new agents enter or leave the network.

Limone’s tuple contents do not ETuple t = new ETuple();
t.addField(new EField(“ID”, 15));
// Field <ID: 15>
t.addField(new EField(“Flag”,

“mark”));
// Field <Flag: “mark”>
getTS().out(t);
// out(<ID: 15, Flag: “mark”>

Fig. 5. Limone out Code Snippet

ETemplate t = new ETemplate();
t.addConstraint(new EConstraint(“ID”,

Integer.class, new DefaultConstraint-
Function()));

// Match field ID containing any Integer
t.addConstraint(new EConstraint(“Flag”,

String.class, new Equivalency-
ConstraintFunction(“mark”)));

// Match field flag containing “mark”
ETuple tuple = getTS().rd(t);
// rd a tuple matching this template

Fig. 6. Limone rd Code Snippet

suffer from many of the restrictions
imposed by their Agilla counterparts.
Fields in Limone tuples are indexed
by a user-specified name and can con-
tain any Java data type of any size.
Similarly, Limone templates are more
flexible than Agilla templates. In ad-
dition to matching by name and type,
Limone templates use constraint
functions to provide a fine-grained
way to specify matching values. For
example, the constraint <“ID”, In-
teger, GreaterThanConstraint(10)>
matches fields named “ID” that con-
tain an Integer greater than 10. Most
constraints use either DefaultCon-
straintFunction (match any value of
the correct type), or EquivalencyCon-
straintFunction (match only the spec-
ified value). Figures 5 and 6 provide
code which demonstrate the syntax of
Limone’s out and rd operations.

4 Architecture of Agimone

We have constructed the Agimone architecture (shown in Figure 7) which in-
tegrates the Agilla and Limone middleware platforms. Each WSN is associated
with a base station such as a laptop or a Stargate. The WSNs are populated with
Agilla agents which perform computations and collect sensor data. Inter-agent
communication is facilitated by Agilla tuple spaces. Each WSN node hosts one
Agilla tuple space, and up to three Agilla agents.

The IP network and WSNs are spanned by WSN gateways attached to these
base stations: sensors can communicate with a nearby gateway wirelessly, while
the base stations communicate with their attached gateways using a wired inter-
face (e.g., UART or USB). The base stations communicate over the IP network
using Limone. Communication in Limone is performed using tuple spaces; each
Limone agent is provided with its own Limone tuple space.

WSNs discover each other using beacons where multicast routing is sup-
ported, or a centralized service directory elsewhere. We have implemented a
simple Limone service registry that is suitable for a small number of agents.



IP Network

WSN 1

Limone

Registry

Base

Station

WSN

Gateway

Sensor

WSN 2

Fig. 7. Agimone Network Architecture

WSN Gateway

Agilla
Agent

Limone 
TS

Agilla 
TS

AgimoneAgent

Limone 
TS

AgimoneAgent

Agilla 
TS

IP

Agilla 
TS

Limone 
Registry

WSN Gateway

Agilla
Agent

Agilla 
TS

Agilla
Agent

Agilla 
TS Agilla

Agent

Agilla 
TS

WSN 1 WSN 2

Fig. 8. Agimone System Components

However, it is not designed to scale for deployment on larger networks like the
Internet. Since Limone’s discovery mechanism is pluggable, applications that
require greater scalability can use a more sophisticated protocol, like WSDL [8].

Agimone is populated with the following components, as shown in Figure 8:

– The AgimoneAgents are specific Limone agents which allow Agilla tuples and
agents to traverse the IP network. These agents serve as the basis for the
Agimone integration layer. Each base station hosts one AgimoneAgent.

– The Agilla and Limone tuple spaces, as described above.
– The Limone registry allows remote WSN discovery. Each application shares

a single Limone registry.

In the rest of this section, we will describe Agimone’s services in further detail.

4.1 WSN Discovery

Since new WSNs are formed and destroyed as the applications evolve, it is of-
ten necessary for agents in the WSNs to be aware of these changes at run-
time. This is accomplished using a WSN advertisement scheme. Each base sta-
tion’s AgimoneAgent encapsulates information about the corresponding WSN in
a WSN advertisement message. This advertisement describes the WSN’s prop-
erties to Agilla agents. Since different applications may be interested in different
properties of the WSNs, this advertisement is application-specific. For example,
agents that comprise a cargo tracking application may be interested in know-
ing the location of each network. Thus, the WSN advertisements contain a 3-
character string describing their locations, such as “dok” (dock) or “shp” (ship).



When a new WSN connects to the IP network, its corresponding
AgimoneAgent beacons a well-known Limone registry with messages containing
its WSN advertisement. The Limone registry forwards these advertisements to
other Limone agents. Similarly, the registry notifies Limone agents when hosts
leave the network. AgimoneAgents use these notifications to store up-to-date
copies of all other WSN advertisements in their base station’s Agilla tuple space.

1: pusht STRING
// type STRING

2: pushc 1 // length of template
3: pushloc UART X UART Y

// base station’s location
4: rrdp // rrdp(base station,

// <STRING>)

Fig. 9. WSN Discovery Code Snippet

1: pusht STRING
// type STRING

2: pushc 1 // length of template
3: pushloc UART X UART Y

// base station’s location
4: rrdp // rrdp(base station,

// <STRING>)
5: rjumpc OK
6: halt // if tuple not found, halt
7: OK pushloc UART X, UART Y

// base station’s location
8: smove // migrate to base station

Fig. 10. Migration Code Snippet

Agilla agents can access the base station’s tuple space by performing re-
mote tuple space operations with the special destination address (UART X,
UART Y). Thus, they can select an appropriate WSN advertisement using a
rrdp operation. The example code in Figure 9 places any available WSN adver-
tisement containing a string on top of the Agilla agent’s operand stack.

4.2 Migration Across WSNs

Using these advertisements, Agilla agents can select other WSNs and migrate
to them with the assistance of the AgimoneAgent. This procedure is detailed in
Figure 11. WSN advertisements are distributed in Steps 1 and 2, and placed in
the base stations’ Agilla tuple space in Step 3. The Agilla agent selects one of
these WSN advertisements in Step 4 and places it on top of its operand stack.

Once the Agilla agent has an acceptable advertisement on its operand stack,
it performs a strong migration to the WSN gateway, as shown in Step 5. Sample
code to perform this operation is listed in Figure 10. This migration request is
forwarded to the AgimoneAgent executing on the base station in Step 6. The
AgimoneAgent extracts the destination WSN advertisement from the top of the
agent’s operand stack. It then encapsulates the Agilla agent into a Limone tuple
of the form <Agent: (encapsulated agent)>. In Step 7, it places this tuple into
the Limone tuple space of the destination network’s AgimoneAgent.

On initialization, AgimoneAgent installs a reaction on its tuple space that
notifies it of tuples in the form <Agent: Agilla Agent>. Thus, in Step 8, the



Limone 
Registry Agilla Agent

WSN Advertisement

AgimoneAgent

Limone TS Agilla TS

(5) migrate

(2) new advertisement

(3) out

Limone TS Agiila TS

(1) advertise

(7) out

(6) forward

(8) react

(9) forward

Agilla TS

(4) rd

WSN 1

IP

Agilla TS

(10) migrate

WSN 2

Fig. 11. Agilla Agent Migration Across Different WSNs

AgimoneAgent on the destination base station is notified of the tuple’s arrival. It
extracts the agent from the tuple and injects it into the WSN gateway in Step 9.
In Step 10, the agent migrates to the new WSN, where it resumes computation.

This process involves several transactions across WSNs and the IP network.
However, this is transparent to the Agilla agent developer, who only invokes a
single migration operation to the base station. Thus, developers can leverage the
Limone network’s infrastructure while still using the familiar Agilla APIs.

4.3 Cross-Middleware Interactions Via Tuple Spaces

So far, we have only considered the IP network as a way for distant WSNs to
interact. However, it can also be used to support interactions between devices
in a WSN and devices on the IP network. Because of the limited computational
powers of wireless sensors, Agilla agents may wish to use devices on the IP
network as a computational resource. Likewise, a Limone agent may wish to
exploit the sensing resources of a remote WSN. Both goals can be achieved
by giving Limone agents access to the Agilla tuple space that resides on each
base station, providing both types of agents with a common data space for
exchanging messages. However, directly exposing the Agilla tuple space API to
Limone agents has some undesirable side effects. For example, though Limone
agents can reside on any host in the IP network, they would only be able to
interact with a WSN if they reside on a base station within its radio range.

Instead, the AgimoneAgent exposes each base station’s Agilla tuple space
to the Limone network by wrapping it in the Limone tuple space API. Other
Limone agents communicate with Agilla agents by performing remote tuple-
space operations on this Limone tuple space. The AgimoneAgent translates these
operations to their Agilla equivalents and forwards them to the Agilla API.
Hence, any tuples placed by Limone agents into this tuple space are available to



Agilla agents in the corresponding WSN, and vice-versa. These Limone agents
need not have a WSN gateway attached to their host to interact with the WSN,
since an AgimoneAgent will communicate with the WSN on their behalf. Limone
and Agilla agents interact with this shared tuple space using their respective
APIs. So, developers who are only familiar with one of these systems can still
leverage resources made available by the other, without first learning a new API.

However, as discussed earlier in Section 3, there are restrictions on Agilla
tuples and templates that do not exist in Limone. For example, a Limone agent
may try to place the tuple <ID: 3.14, Flag: “mark”> in the AgimoneAgent’s tuple
space. Since Agilla does not have a floating-point data type, there is no way to
convert this Limone tuple to an equivalent Agilla tuple. To resolve this problem,
the AgimoneAgent uses Limone’s rejection mechanism to filter incoming tuple
space operations. This mechanism allows agents to reject any remote operations
issued on their tuple space. The AgimoneAgent places the following restrictions
on all incoming tuples and templates:

– Fields cannot be named arbitrarily. Field names must impose a numerical
order on the fields, as required by Agilla. That is, exactly one field must be
named “1”, exactly one field must be named “2”, etc.

– Fields must contain Agilla data types.
– The only constraint functions are DefaultConstraintFunction (i.e., match by

type) or EquivalencyConstraintFunction (i.e., match by exact value).

The AgimoneAgent will reject all non-conforming operations, since they have
no Agilla equivalents. Conforming operations are converted to their Agilla coun-
terparts and forwarded to the Agilla tuple space. The results are converted from
Agilla tuples to Limone tuples (using the conventions specified above) and sent
back to the request’s originator.

4.4 Implementation Details

Agilla and Limone have been implemented and deployed on a wide variety of
hardware. Agilla has two parts: a NesC-based portion that is installed on sensors,
and a Java-based AgentInjector that is installed on base stations. Since storage
is at a premium on many sensors, Agilla is necessarily compact: it consumes
49.66KB of flash ROM and 3.07KB of RAM. Agilla supports several different
sensor architectures, including Mica2, MicaZ, and Tyndall25. For this paper, we
used a CVS snapshot of Agilla 3.0, which can be downloaded from [9].

The Limone and Agimone packages are developed in Java according to the
J2ME Personal Profile 1.0 [10] specification. This allows deployment on devices
like PDAs and Stargates which cannot host full Java Standard Edition runtimes,
as well as on desktop and laptop computers. Limone was designed for deployment
on storage-constrained devices like PDAs: its bytecode distribution consumes
only 132KB of storage space. Agimone is even more compact: it consumes 13KB
of storage space. Agimone operates on any platform supported by Limone, which
includes Windows Mobile, Windows XP, Linux, Solaris, and Mac OS X.



5 Case Study: Cargo Tracking

Using the architecture described in the previous section, we can implement a wide
range of complex WSN applications. Cargo tracking is one such application that
is well-suited for implementation using Agimone. As discussed in Section 2, cargo
containers can be equipped with sensors that form WSNs in localized clusters.
Many of these containers are located in remote warehouses and vehicles. So,
users must be able to interact with these clusters without needing to be within
the WSN’s communication range. This can be achieved by connecting the WSNs’
base stations using a common IP network, then deploying Agimone on them so
that queries may traverse either network as needed.

In this section, we present a prototype application that uses mobile agents
to track cargo. Our group had developed a similar application (demonstrated
at SenSys ’05 [11]) using a custom Limone agent to marshal messages between
the sensor and IP networks. This custom agent had to be repeatedly modified
and redeployed as our application’s feature set evolved, greatly complicating
development efforts. These difficulties motivated the creation of Agimone and a
complete redesign of the application around it, resulting in much cleaner code
overall and a simpler deployment process. Although Agimone was motivated by
the cargo tracking application, we emphasize that Agimone is a general purpose
middleware with a uniform programming model that can be used for a broad
class of applications that need to integrate multiple WSNs and the IP network.

In the interest of space, we provide here a brief overview of two agents that
are part of this application. More in-depth information about the application,
including sample code, may be found in [12].

5.1 Watchdog Agents

Sensors attached to shipping containers can be equipped with various inexpensive
sensor boards which can be used to detect attempted intrusions into the contain-
ers. As a demonstration of this potential, we have implemented two prototype
agents that monitor the sensor’s accelerometer and light readings, respectively.
These agents loop, repeatedly reading the sensor until an unusual reading is de-
tected. When this happens, an event is recorded in the local tuple space, and an
alert tuple is placed in the base station’s tuple space.

The AgimoneAgent on the base station automatically exposes these alert
tuples to the Limone network. Remote Limone clients on the IP network can
register reactions for these tuples. Limone automatically notifies these clients
when any new alerts are generated. We can then do whatever processing we
desire with these alerts (e.g., log it to disk and notify security personnel).

As a testament to Agilla’s expressiveness, the watchdog agent that monitors
the light sensor contains only 17 lines of code. The Limone client requires only
11 lines of code to automatically receive alerts and extract their contents. The
Agilla agent and the Limone client were developed in only a few hours.



5.2 Intrusion Search Agent

A user, such as a shipping company or a port authority, may later want to
search all the containers for any tampering recorded by the watchdog agents.
Consider a scenario where containers are being moved between a ship and a
loading dock, each of which has a corresponding WSN and base station. These
base stations are connected by an IP link, e.g., Ethernet or 802.11b. Though
users can search both WSNs simultaneously, a comprehensive search may be
unnecessarily expensive. Ideally, the scope of such a search should be determined
at runtime. For example, the user may know that containers on the ship are
far more susceptible to tampering than the dock. So, the search for tampered
containers should begin on the ship. If one of these containers has been tampered
with, then the search should automatically expand to the dock, in order to
determine the scope of the security breach.

We have developed a sample Agilla agent which consults WSN advertisements
at runtime to locate WSNs and apply this searching policy. This involved adding
only 23 lines of code to the previous Agilla agent. Owing to Agimone’s flexibil-
ity, the Limone client used to monitor the watchdog agents’ alerts required no
modifications to support this new agent’s alerts. Further, no additional support
code had to be deployed to the base stations to support inter-WSN migrations.

6 Performance Evaluation

We evaluated our system by deploying it on two WSNs connected by an IP
network. The WSNs are composed of Mica2 motes and are separated by us-
ing different radio channels. Each WSN has a single gateway attached to an
IBM R40 laptop via a 115.2Kbps serial link. The laptops are connected via a
100Mbps wired Ethernet link. Since they are on the same subnet, discovery is
performed using multicast beacons rather than a Limone registry. The laptops
are configured with a 1.5GHz Intel Pentium M processor, 512MB of RAM, Win-
dows XP and Java Standard Edition 5.0. Latencies are measured using Java’s
System.nanoTime() method, which uses the system’s most accurate timer. This
section presents micro-benchmarks examining the primitives that cross network
boundaries. These benchmarks can be divided into three categories: tuple space
operations, agent migration, and overall performance.

We have not compared the performance of Agimone to any other middle-
ware systems. This is because to date no comparable systems exist: Agimone is
currently the only middleware which supports the interaction of mobile agents
across WSNs joined by an IP network. In this section, we focus on the cost of
the inter-WSN operations supported by Agimone. The interested reader may
consult [4] for a detailed discussion of Agilla’s intra-WSN performance.

6.1 Tuple Space Operations

In the first set of benchmarks, we evaluate the cost of the tuple space opera-
tions rinp, rrdp, and rout across middleware boundaries. These operations may



1) Mote-to-PC

Limone IP 
Network

3) PC-to-PC

5) PC-to-Mote
Source Agilla 

WSN
Destination
Agilla WSN

Agilla

Limone
4) Limone-to-Agilla

Agilla

Limone
2) Agilla-to-Limone

Fig. 13. The Five Stages of an Inter-WSN Agent Migration Operation.

be performed by the AgimoneAgent on the tuple space belonging to the WSN
gateway (PC-to-Mote), or by an Agilla agent on the base station’s tuple space
(Mote-to-PC). In the interest of brevity, we only provide here a brief overview of
the benchmarks. The interested reader may find more technical details in [12].

Mote-To-PC. The first set of bench- Operation latency (ms)
(Mote-to-PC)

rinp 10.64± 0.15

rrdp 10.35± 0.06

rout 10.37± 0.07

Operation latency (ms)
(PC-to-Mote)

rinp 10.98± 0.17

rrdp 11.26± 0.19

rout 10.85± 0.07

Fig. 12. The Latency of Remote
Tuple Space Operations

marks determine the latency of an Ag-
illa agent on the WSN gateway accessing
AgimoneAgent’s Agilla tuple space. We cre-
ated three benchmark agents, each of which
performs one of the remote tuple space opera-
tions (rinp, rrdp, and rout) 100 times, over
which the mean was calculated. Each bench-
mark was repeated 100 times. The operations
have an average latency of 10 to 11 ms, as
shown in shown in Figure 12.

PC-To-Mote. The second set of bench-
marks repeats the same operation in the op-
posite direction. In this case, since the latency
can be directly measured, each experiment calculates the latency of one operation
execution. Figure 12 shows the average results from 100 runs of each benchmark.
The mean latency of PC-to-Mote tuple space operations is 10 to 11 ms.

6.2 Agent Migration Operations

As discussed in Section 3.1, agent migrations enable agents located in one WSN
to migrate across an IP network into another WSN. From an Agilla agent’s per-
spective, an inter-WSN agent migration occurs by invoking a single operation.
However, as discussed in Section 4, there many steps involved which are trans-
parent to the agent. In this set of benchmarks, we identify five distinct stages
involved in migrating a 36-byte agent across WSNs, as shown in shown in Fig-
ure 13, and measure the cost of each stage. Again, we refer the interested reader
to [12] for more in-depth technical details.

The results of these benchmarks are shown in Figure 14. All benchmark re-
sults are presented as an average of 1000 runs. Note that stage 2 has a significant
difference between mean and median latency. This difference is caused by sparse
points with values orders of magnitude above the mean, which we suspect are
caused by the process being interrupted by the OS or Java’s garbage collector.



Stage 1: Mote-to-PC. Here, the agent moves from the source mote to the
base station. We measured this procedure by deploying an agent which searches
the AgimoneAgent’s tuple space for a WSN advertisement and then attempts to
migrate to the base station. The mean latency of this stage is 36.12± 1.19ms.

Stage 2: Agilla-to-Limone. In this
Mean Median

Stage Latency Latency

1 36.12± 1.19ms 33.73ms

2 1.03± 0.16ms 303.95µs

3 19.45± 0.26ms 18.77ms

4 1.13± 0.16ms 834.74µs

5 28.16± 5.92ms 22.28ms

Fig. 14. The Latency of Each
Agent Migration Stage (Average of
1000 Runs)

tage, the agent passes from the Agilla mid-
dleware on the base station to the Limone
middleware. The cost of this operation should
be negligible, since it only involves a few local
method calls. This is borne out by our tests;
the mean latency is 1.03± 0.16ms.

Stage 3: PC-to-PC. In this stage, the
AgimoneAgent encapsulates the migrating
agent into a Limone tuple and places it in the
destination AgimoneAgent’s tuple space. We
timed this stage by repeatedly migrating an
agent between two base stations, then halving
the round-trip time. This stage had a mean latency of 19.45± 0.26ms.

Stage 4: Limone-to-Agilla. In this stage, the AgimoneAgent extracts
the encapsulated agent from the Limone tuple and passes it to Agilla’s
AgentInjector. Like stage 2, this only involves a few local method calls, so
the latency should be negligible. We recorded the time between placing the tu-
ple in the tuple space to passing the agent to the AgentInjector. The mean
latency is 1.13± 0.16ms; as expected, this is negligible relative to other stages.

Stage 5: PC-to-Mote. In the final stage, the agent is injected into the
destination WSN. Similarly to stage 1, we measured this latency by migrating
an agent which immediately reads an advertisement tuple from the base station,
and measuring the time between injection and receiving the tuple space request.
The mean latency of this stage is 28.16± 5.92ms.

6.3 Overall Performance

The last set of benchmarks evaluate the latency of common sequences of oper-
ations. The In-and-Out benchmark measures the cost of migrating in and out
of the same WSN. The End-to-End benchmark evaluates the cost of migrating
from one WSN to a different WSN and back. These two benchmarks use the
same 36-byte agent and are repeated 1000 times.

While Agimone simplifies programming and increases network flexibility, its
use of virtual machines results in some overhead. We quantify this overhead by
comparing the first two benchmarks above with native-code implementations. To
isolate the cost of message-passing from execution, the native implementations
exchange 36-byte data messages in place of 36-byte mobile agents.

In-and-Out. This benchmark injects an agent which migrates repeatedly
between two WSNs, and measures the cost of moving the agent in and out of
one WSN. When the agent is injected into the WSN, it immediately performs a
rrdp to find the other WSN’s advertisement, and then attempts to migrate to it.



0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

Round

L
a

te
n

c
y

 (
m

s
)

Agimone

Native Implementation

Fig. 15. The In-and-Out Agent Migra-
tion Latency.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000
Round

La
te

nc
y 

(m
s)

Agimone
Native Implementation

Fig. 16. The End-to-End Migration La-
tency

Thus, this benchmark measures the aggregate of the Mote-to-PC, PC-to-Mote,
Limone-to-Agilla, and Agilla-to-Limone migration operations, and the Mote-to-
PC tuple space operation. The results of this benchmark are shown in Figure 15.
The mean In-and-Out latency is 62.18 ± 6.09ms, with a 55.76ms median. This
is approximately the aggregate of the constituent stages (1, 2, 3, and 4).

The native implementation of In-and-Out is a Java application that sends a
36-byte query to the attached gateway sensor in two TinyOS packets; the sensor
immediately sends 36 bytes of data back. The benchmark measures the time
from sending the request to receiving the response. The native implementation
has a mean latency of 30.09± 0.51ms, and a median latency of 26.29ms.

End-to-End. The End-to-End latency is measured by injecting the same
agent and recording its round-trip time over the IP network. The results are
shown in Figure 16. The mean round trip time is 179.19±9.96ms, with a median
of 167.96ms. This closely matches the sum of the various stages involved.

The native implementation of End-to-End adds to the In-And-Out bench-
mark by sending a 36-byte packet over the IP network to a remote base station
after receiving a response from the WSN. The remote base station sends a 36-
byte reply. The benchmark measures the time from querying the sensor node to
receiving a response from the remote base station. The native implementation
has an mean latency of 86.36± 2.15ms, and a median latency of 84.38ms.

The benchmarks presented in this section provide a general overview of Ag-
imone’s performance and overhead. All inter-network tuple space operations,
regardless of direction, take about 10.5ms. A mobile agent takes about 85.9ms
to migrate from one WSN to another. Of this, approximately 65ms is spent
moving to and from the WSN and its base station, and 20ms is spent traversing
the IP network. The latency of migrating into a WSN and back is about 60ms.
Most of this time (>57ms) is spent on the serial link between the base station
and WSN gateway. The actual transition from Agilla to Limone is less than 1ms
in either direction. The overhead of Agimone compared to native code varies
depending on the task. In the two operations presented, In-And-Out and End-
to-End, there was a 32.09ms and 92.83ms increase in execution time relative



to native code, respectively. Native code, however, is not nearly as flexible as
mobile agents, and presumably requires more development time.

7 Related Work

There are many middleware systems that increase WSN flexibility by enabling
in-network reprogramming. They include XNP [13], Deluge [14], Maté [6], Sen-
sorWare [15], Impala [16], and Smart Messages [17]. There are also coordination
middleware like Lime [18], and MARS [19] that are designed for IP networks.
These middleware systems are either targeted for WSNs, or IP networks, but not
the integration of both. Recent systems that integrate IP and sensor networks
are more closely related to Agimone.

The Hourglass [20] and Stream-based Overlay Networks (SBONs) [21] sys-
tems form an overlay network over the Internet out of servers connected to
various WSNs. The system routes data streams generated within WSNs to ap-
plications on the Internet. The system also provides resource registration and
discovery services to servers. Servers dynamically adapt to network conditions by
installing stream operators like data filters and aggregators on the source, e.g., to
reduce network congestion. Hourglass-SBON focuses on delivering data streams
generated within WSNs to consumers on the Internet. Agimone, on the other
hand, is a general-purpose middleware system that supports agent migration
and coordination across WSNs and IP networks, as well as data sharing.

Tenet [22] provides a two-tiered architecture partitioned into resource-poor
sensors and relatively powerful computers connected via an IP network. The
higher-tier computers directly control sensors, which service them using well-
established protocols. This moves much of the application development onto
more-powerful computers, simplifying debugging. Unlike Agimone, Tenet’s tasks
cannot relocate autonomously or carry state across nodes. Therefore, Agimone
provides a more flexible infrastructure for deploying adaptive applications. Also,
Tenet uses message passing as its basic communication paradigm, which easily
fails in the face of transient link failures. Agilla uses tuples for all inter-agent
communication, which survive temporal communication failures.

SERUN [23] uses a three-level network architecture divided into inexpen-
sive data-gathering sensors, data-processing microservers, and PC-class systems
where end-users can issue queries. When a query is issued, a task is sent to a
microserver that queries one or more sensors and processes the data according
to the task’s instructions. SERUN differs from Agimone in that it moves much
of the application-specific code away from the low-power sensors and onto the
microservers, and its tasks cannot autonomously migrate across microservers.

IrisNet [24] diverges from traditional WSNs by proposing an Internet-scale
sensor network consisting of desktop PCs with low-cost sensors, e.g., web cams.
IrisNet provides a query service for obtaining sensor data from anywhere on the
Internet. Functionally, it is similar to TinyDB [25] in that it treats the network
as a database. However, since IrisNet operates on relatively powerful machines
rather than embedded sensors, it is best suited for applications where sensing



capabilities are secondary to computational resources. In this sense, IrisNet is
complementary to Agimone rather than an alternative.

8 Conclusion

In this paper, we have presented Agimone, a middleware system for integrating
WSNs over the Internet and other IP networks. We have implemented an efficient
layer that integrates Agilla and Limone, two existing mobile agent middleware
platforms. By designing a cargo tracking application that uses Agimone, we
have demonstrated how developers can easily take advantage of the functionality
we provide. Our empirical performance data demonstrates the efficiency of our
middleware on existing sensor and base station hardware. Though there is some
runtime overhead associated with using mobile agents as compared to native
code, the increase in developer productivity outweighs this performance penalty
for all but the most time-critical of applications.

Acknowledgment

This research is supported by the Office of Naval Research under MURI research
contract N00014-02-1-0715 and by the the NSF under NOSS contract CNS-
0520220. Any opinions, findings, and conclusions expressed in this paper are
those of the authors and do not necessarily represent the views of the research
sponsors. We would also like to thank Boeing Corporation for their support on
an earlier version of the cargo tracking application.

References

1. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Architectural Support for Programming
Languages and Operating Systems. (2000) 93–104

2. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: Proc. of the ACM SenSys. (2003)

3. (http://platformx.sourceforge.net/)
4. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of

adaptive wireless sensor network applications. In: Proc. of the 24th International
Conference on Distributed Computing Systems (ICDCS’05), IEEE (2005) 653–662

5. Fok, C.L., Roman, G.C., Hackmann, G.: A Lightweight Coordination Middleware
for Mobile Computing. In DeNicola, R., Ferrari, G., Meredith, G., eds.: Proceedings
of the 6th Internation Conference on Coordination Models and Languages (Coordi-
nation 2004). Number 2949 in Lecture Notes in Computer Science, Springer-Verlag
(2004) 135–151

6. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: ASPLOS-
X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, New York, NY, USA, ACM Press
(2002) 85–95



7. (http://mobilab.wustl.edu/projects/agilla)
8. W3C-XML-Activity-On-XML-Protocols: W3c recommendation: Web services de-

scription language 1.1. http://www.w3.org/TR/wsdl (2003)
9. (http://mobilab.wustl.edu/projects/agilla/download/index.html)

10. (http://java.sun.com/products/personalprofile/index.jsp)
11. Hackmann, G., Fok, C.L., Roman, G.C., Lu, C., Zuver, C., English, K., Meier,

J.: Demo abstract: Agile cargo tracking using mobile agents. In: Proceedings of
the 3rd Annual Conference on Embedded Networked Sensor Systems (SenSys’05),
ACM (2005) 303

12. Hackmann, G., Fok, C.L., Roman, G.C., Lu, C.: Agimone: Middleware support
for seamless integration of sensor and ip networks. Technical Report WUCSE-
05-56, Washington University in St. Louis Department of Computer Science and
Engineering (2005)

13. (http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf)
14. Hui, J., Culler, D.: The dynamic behavior of a data dissemination protocol for

network programming at scale. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems, ACM Press (2004) 81–94

15. Boulis, A., Han, C.C., Srivastava, M.: Design and implementation of a framework
for efficient and programmable sensor networks. In: Proc. of MobiSys, USENIX
(2003) 187–200

16. Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic,
parallel sensor systems. In: ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. (2003)

17. Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart messages:
A distributed computing platform for networks of embedded systems. Special Issue
on Mobile and Pervasive Computing, The Computer Journal 47 (2004) 475–494

18. Picco, G., Murphy, A., Roman, G.C.: Lime: Linda meets mobility. In: Proc. of the
21st Int’l. Conf. on Software Engineering. (1999)

19. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4(4) (2000) 26–35

20. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:
Hourglass: An Infrastructure for Connecting Sensor Networks and Applications.
Technical Report TR-21-04, Harvard (2004)

21. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., , Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of the
22nd International Conference on Data Engineering (ICDE’06, to appear). (2006)

22. Govindan, R., Kohler, E., Estrin, D., Bian, F., Chintalapudi, K., Gnawali, O.,
Rangwala, S., Gummadi, R., Stathopoulos, T.: Tenet: An architecture for tiered
embedded networks. Technical Report CENS-TR-56, UCLA CENS (2005)

23. Liu, J., Cheong, E., Zhao, F.: Semantics-based optimization across uncoordinated
tasks in networked embedded systems. Technical Report MSR-TR-2005-46, Mi-
crosoft Research, One Microsoft Way, Redmond, WA 98075 (2005)

24. Gibbons, P., Carp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a
worldwide sensor web. IEEE Pervasive Computing (2003) 22–33

25. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: Proceedings of the 2003 ACM SIGMOD
Int. Conf. on Management of Data. (2003) 491 – 502


