Implementation of Decentralized Damage Localization in Wireless Sensor Networks

Fei Sun Master Project Advisor: Dr. Chenyang Lu

Wireless Sensor Network

Structural Health Monitoring

• A Civil Engineering technique used to determine the condition of structures

– e. g. buildings, bridges

 Detect and localize damage using vibration sensors

Motivation and Challenges

- Wired sensor deployment is expensive
- Wireless deployments can be:
 - Cost efficient
 - Higher density
 - More flexible

Related Work - Golden Gate Bridge

Related Work - SHIMMER

SHIMER project by the Los Alamos National Lab

Problem Description

- Damage **localization** in addition to detection
- Limited Resource on WSN node
 - Limited memory
 - Limited transmission bandwidth
 - Limited power supply
- Unreliable wireless connectivity

DLAC Algorithm

Implementation

- Hardware
 - Intel Mote 2
 - 32-bit 416 MHz CPU
 - 32MB RAM
 - Intel ITS400 Sensor Board
 - LIS3L02DQ 3-Axis Accelerometer
- Software
 - TinyOS
 - NesC

IMote2

ITS400 Sensor Board

Software Architecture

• Reliable data transmission done through ARQ

• Average on the power spectrums to reduce noise

• Often times, the sensor board driver crashes and never returns a sampleDone event

• Time out timer used to detect and bypass such scenario

User Control Interface

🗉 Wireless Sample 2					
Start Freq: End Freq:	0.01 2.0	3.0 6.0	9.0 18.0	18.0 28.0	28.0 42.0
MotelD	SampleFreq				
41	274.98	Set Init Values	Get Result	Get Raw Data	Get PS Data
35	276.57	Set Init Values	Get Result	Get Raw Data	Get PS Data
49	276.03	Set Init Values	Get Result	Get Raw Data	Get PS Data
48	283.48	Set Init Values	Get Result	Get Raw Data	Get PS Data
27	277.81	Set Init Values	Get Result	Get Raw Data	Get PS Data
45	272.2	Set Init Values	Get Result	Get Raw Data	Get PS Data
42	274.87	Set Init Values	Get Result	Get Raw Data	Get PS Data
		Start DLAC !!!	Save Results		

The Beam Test

Beam Results

- Successful damage detection and localization for all damage scenarios
 - With correlation measurements >90% at the damaged positions

The Truss Test

Truss Results

- Successful damage detection and localization for all damage scenarios
 - With correlation measurements >85% at the damaged positions

Damage Location #3

Conclusion

- Design and Implementation of a SHM damage detection and localization technique on WSNs

 – correlation-based and decentralized
- Successful damage localization for two sets of experiments
- Future Work:
 - Debug sensor failure
 - Power Management

Appreciation

- Dr. Chenyang Lu
- Dr. Shirley Dyke
- Nestor Castaneda
- WUSTL WSN Group
- WUSTL Earthquake Lab
- Dr. Tomonori Nagayama