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ABSTRACT 
Continued rapid progress in the development of embedded motion 
sensing enables wearable devices that provide fundamental 
advances in the capability to monitor and classify human motion, 
detect movement disorders, and estimate energy expenditure. 
With this progress, it is becoming possible to provide, for the first 
time, evaluation of outcomes of rehabilitation interventions and 
direct guidance for advancement of subject health, wellness, and 
safety. The progress in motion classification relies on both the 
performance of new sensor fusion methods that provide inference, 
and the energy efficiency of energy-constrained monitoring 
sensors. As will be described here, both of these objectives require 
advances in the capability of detecting and classifying the location 
and environmental context. Context directly enables both 
enhanced motion classification accuracy and speed through 
reduction in search space, and reduced energy demand through 
context-aware optimization of sensor sampling and operation 
schedules. There have been attempts to introduce context 
awareness into activity monitoring with limited success, due to the 
ambiguity in the definition of context, and the lack of a system 
architecture that enables the adaptation of signal processing and 
sensor fusion algorithms specific to the task of personalized 
activity monitoring. In this paper we present a novel end-to-end 
system that provides context guided personalized activity 
classification. With a refined concept of context, the system 
introduces interface models that feature a unique context 
classification committee, the concept of context specific activity 
classification, the ability to manage sensors given context, and the 
ability to operate in real time through web services. We also 
present an implementation that demonstrates accurate context 
classification, accurate activity classification using context 
specific models with improved accuracy and speed, and extended 
operating life through sensor energy management.   
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1. INTRODUCTION 
The rapid advance in microelectronics has provided MEMS 
inertial sensors, low power processors, and low cost monitoring 
systems applicable to human motion classification. Many of the 
most urgent problems in health and wellness promotion, 
diagnostics and treatment of neurological condition and even 
athletic performance advancement are now possible. The wireless 
health community exploits this along with smartphone technology 
for an integration of monitoring and in field guidance for both 
advancing and evaluating treatment outcomes.  

Recently developed solutions monitor a subject’s physical 
activity, for example walking gait speed monitoring for 
recovering stroke patients in the field of wireless healthcare [1,2]. 
For many applications, there is also a need for personalized, 
targeted monitoring for specific activities, in specific 
environments. For example a stroke patient benefits from 
monitoring of gait speed while in the hospital and then at home to 
ensure that their mobility is sufficient to enable safe passage 
through urban areas. Also, these subjects benefit from monitoring 
and guidance for aerobic exercises while at home to maximize the 
effectiveness of recovery routines [3].  
A large body of work has focused on the accurate detection of 
physical activities, using a diverse range of classification and 
feature extraction techniques [1,2,4,5,9,10-12,31]. These methods 
confront the challenge of classification of a specific, correct 
motion among many possible at any observation time. As the 
number of potential motion increases, classification reliability is 
degraded. In addition, lacking any other source of guidance for 
scheduling, these methods require continuous operation of all 
platform components.  This latter requirement limits operating life 
of energy-constrained wireless platforms.    
In fields including wireless sensor networking, pervasive 
computing, and others, the concept of context-awareness has been 
introduced with the objectives of improving human machine 
interaction, and enabling low energy operation while retaining 
system performance. Many architectures have been proposed to 
bring personalization and adaptation to a system [6], and recent 
attempts have been made to introduce context to activity 
classification [7,8]. These systems experienced limited success 
due to ambiguity in the definition of context, and a lack of an 
appropriate system architecture that is specific to the task of 
personalized activity monitoring. 
In addressing the above-mentioned deficiencies, we propose a 
novel end-to-end system that provides context guided 
personalized activity classification. Our focus is on three major 
areas: 1) The ability to accurately detect context with multiple 
sensing modes; 2) The use of context to improve classification 
accuracy, speed, and energy usage; and 3) The ability to target 
specific physical activities of interest, given context. The 
development of this system also addresses the problems 
associated with the operation of experimental systems required for 
system training and validation. In support of the three areas of 
innovation above, this paper introduces some major contributions: 
1) Context guided personalized activity classification; and 2) An 
architecture for real time end-to-end rapid development and 
operation. 
 



2. RELATED WORK 
Many investigations in medical science over the last decade have 
demonstrated the critical benefits of activity monitoring for 
applications ranging from health and wellness promotion to 
disease treatment, to performance advancement and injury risk 
reduction in athletics. One example is the use of motion and sound 
data sources in an application that provides telemonitoring for 
elderly individuals living independently [9]. Here, a method was 
developed that can detect when a user requires attention (as a 
result of a fall or long periods of inactivity). In another study, 
accelerometer sensor data sources and machine learning 
algorithms were applied for monitoring intervention effectiveness 
of acute stroke patients [1]. The technology provides physicians 
with the ability to directly measure a patient's activity level, even 
after discharge. This improves on the surrogate laboratory 
measurements, administered only in a clinical setting. An example 
of applications in athletics were presented in [10], where multiple 
accelerometers were used for ambulatory monitoring of elite 
athletes in both competitive and training environments. For 
swimmers, the characteristics of strokes can be captured and 
analyzed. For rowers, the addition of an impeller combined with 
accelerometer data was used to recover intra and inter stroke 
phases for performance analysis. This system was used by 
Australian Olympic athletes in training for competition in the 
2004 Olympic Games. 
Using sensors for activity monitoring has been studied 
extensively. In [11], a system using iPhone and Nike+iPod sport 
kit was proposed for classifying human activities. The activities 
considered include running, walking, bicycling, and sitting. In [4], 
a complex environment with many microphones, video sources 
and other sensors was designed. The study attempted to accurately 
track movements of arms and hands. Activities considered there 
are bathing, dressing, toileting, eating, and others. Results 
indicated that using one third of the 300 available sensors in the 
specially designed lab, tasks can be detected with an accuracy of 
90%. A specially designed glove was introduced for activity 
classification [5]. The glove detects and records objects a user 
touches using an RFID reader. In this system, all the objects being 
monitored (such as utensils, toothbrushes, and appliances) need to 
have RFID tags instrumented.  
Most of the studies above are restricted in the number of activities 
they can detect accurately. These systems are designed either for a 
specific set of activities that may not be easily modified, or have a 
high system installation cost with the requirement to modify 
environments and also monitor subjects only when they are 
present in these environments. 
The recognition of user and environment context has been 
identified as a primary capability for advancing the performance 
and capability of human-computer interfaces in many fields [7]. 
Studies have emerged recently in wireless health that attempt to 
combine context and activity classification. In [12], a multi-sensor 
wearable system was proposed that enables a context that largely 
consists of physical activities. There, 30 sensors were embedded 

into a garment, with multiple processing nodes responsible for 
distributed processing of sensor data. This study treated physical 
activities as contexts, and focused on the sensor fusion 
development. A system for a context-aware mobile phone named 
Sensay was developed [8]. This included context defined as a set 
of user states (normal, idle, uninterruptable). By introducing light, 
motion and microphone sensors, Sensay is able to detect these 
contexts and manipulate ringer volume, vibration, and phone 
alerts. 
It is important to note that the definition of context has varied 
between investigations. It is particularly important to define 
context with the requirement that context states do not themselves 
contain the very activities that are to be detected. Definition of 
context for new development reported here will be included 
below.   

3. SYSTEM DESIGN 
3.1 Context 
When addressing context, many investigations use the important 
definition by Dey [13]. While powerful, the definition of a context 
that includes every characteristics of a given situation, in terms of 
both the environment and the user, is very broad. Useful for some 
applications, it is not suitable for leveraging context in monitoring 
physical activities, as in many cases a context contains physical 
activities that are underlying in the definition. There are a number 
of alternative definitions available in the field of pervasive 
computing, offering different selection of divisions, such as 
external and internal contexts [14,15]. These definitions are 
usually narrower, but still contain a mix of physical activities with 
other environmental attributes. 
In this study, a context is defined thusly: “a context is a subset of 
all attributes that characterizes an environment or situation, 
external to the user”. This definition clearly distinguishes 
between the external environment, and the user's physical 
activities. By means of this context, we will be able to provide a 
guideline for deciding which attribute is associated with context 
and which is associated with physical activity. For example, a 
"meeting" environment is a context, and its characteristics may 
involve certain sound profiles and a set of possible locations. 
"Sitting in a meeting" in contrast is not a context, as it contains the 
user's physical activity of "sitting". 

3.2 System Model 
We have developed and report here a system that is able to 
provide context guided activity classification, with the capability 
for real time online operation. To enable a context guided system, 
we must provide ways of discovering a user's context and ways 
for this information to be consumed by activity classification 
systems. To enable guided training and online classification in 
real time, we must also provide a client for the end user and a 
corresponding web service to interface with the rest of the system. 
Figure 1 depicts the architecture of this new system. 
This architecture provides context detection and activity 
classification, where the context information is utilized by an 
activity classification system, along with activity sensor data. The 
client application is used for collecting sensor data and labels 
from a user, and also for displaying results. A corresponding web 
service runs on the server, and acts as a gateway between the 
client and the core system. This provides a means for the client to 
transmit and access data through a network, in a structured 
manner. 
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separation between the labels can be found. The proper treatment 
of MAC addresses is less clear. It is challenging to represent these 
identifier values in a feature space, and to define a separation. 
This difference in data type determines the suitability of various 
classifiers. For example, classifiers based on SVM are not suitable 
for treatment of MAC addresses, whereas a method such as kNN 
has been used successfully [17]. 
In order to detect context based on a variety of data sources, there 
is a need to use multiple classifiers for different features. This 
paper describes the development of a classification committee 
consisting of n individual classifiers (Figure 3). The individual 
classifiers are trained separately, and after training they can be 
tested for individual accuracy. A voting weight (α) can be 
determined for each classifier, proportional to the perceived 
accuracy. When an unknown class is encountered, the committee 
performs a linear combination of the individual classifiers, and the 
context with the highest vote is the output. 

 
Figure 3 Classifier committee 

This committee approach not only allows fusion of a number of 
sensors with various data types, but also allows for adaptation of 
context detection to individuals with varying habits. For the 
former, it is easy to see that different classifiers can be selected to 
compose the committee, depending on inputs. For the latter, 
suppose a habitual individual exhibits strong patterns in time of 
day relating to context. The weight of a classifier based on time of 
day will be adjusted during training so that the habitual subject 
would have a time classifier with higher vote weighting 
(compared to a subject that is irregular). 

3.5 Context Guided Personalized Activity 
Classification 
Once a context is obtained, the next step is to take advantage of 
this information in activity classification. We introduce the 
concept of a context guided classifier. These classifiers allow us 
to have specifically optimized models that each focus on the 
activities of interest, given context. Unlike conventional activity 
monitoring, there is no single list of comprehensive activities that 
needs to be built into a monolithic classifier. Instead, a basic set of 
activities common across all contexts can be chosen, and this set 
can then be extended or reduced should the need arise for a 
particular context. To illustrate this concept, consider some usage 
scenarios in Table 2. 
Based on context information, the model selector would select an 
appropriate scenario (model), and the activity classifier can then 
make a classification based on the model. There are a number of 
benefits from using this system. First, we can improve 
classification accuracy and speed due to a simplification of feature 
space. Then, the system allows scenarios (models) to be 
determined by investigators, and a person's monitoring program 
can be modified. For example, physicians may wish to monitor a 
stroke inpatient's walking speed and also ensure they are 
intermittently sitting/standing to alleviate deterioration in exercise 

tolerance [3] (Scenario 3). Once discharged, physicians may then 
wish to monitor the patient to make sure that recommended daily 
activities are performed at home (Scenario 4). Another example is 
where personal trainers can prescribe personalized training plans, 
including activities and their duration and place (gym, home, 
office). Here the activity monitoring system can inform the user of 
his/her training progress. Finally, the system gives a user the 
ability to control his/her privacy. Unlike most other monitoring 
systems that are always on, a user can decide to only allow 
monitoring under specific contexts, for specific activities. 

Table 2 Example scenarios 

Scenario 1 Scenario 2 
Basic Set 

• Walking 
• Sitting 
• Standing 

Cafeteria 
• Walking 
• Sitting 
• Standing 
• Eating 

Scenario 3 Scenario 4 
Stroke patient (inpatient) 

• Standing 
• Sitting 
• Walking 
• Walking Slow 
• Walking Fast 

Stroke patient (rehabilitation) 
• Aerobic activity 
• Walking 
• Walking Fast 
• Walking Slow 

 

3.6 Sensor Control and System Training 
By having context and context guided scenarios, we can also 
optimize sensor sampling rate and selectively enable or disable 
sensors to reduce energy demand. For example, there are no upper 
body motions from scenario 1 (Table 2), and the activities have a 
low rate of change. This means that upper body sensors could be 
disabled and sampling rate can be reduced on the lower body 
sensors at no loss in system performance. The benefits of this are 
an overall reduction of power, storage and communication usage. 
Training starts with the user annotating two separate sets of data: 
current context with associated timestamps; and physical activity 
with associated timestamps. From here the training is split into 
two parts. The context classifier requires context sensor data and 
context label, while the activity classifier is trained using activity 
labels and activity sensor data. 

3.7 Client and Server 
Figure 2 describes the core context system. This includes 
description of the client and server architecture enabling real time 
operation. 
As a part of the complete system, the client application guides a 
user in training mode, and then displays classification results in 
online mode. An ideal candidate here is a mobile application 
supported by a smartphone, as we will report in our experimental 
implementation. This is preferred for two primary reasons: First, 
mobile devices are pervasive, which makes the client accessible, 
and we can leverage services off existing network infrastructure 
that is available in the residential, workplace, and clinic 
environments, where the systems reported here are deployed; 
Second, mobile devices are high performance, so they are able to 
act not only as a user interface platform, but also as a wireless 
sensor hub that can log, process and store data from the wearable 
sensors. 
Complementary to the client, a web service is provided in this 
system. The data payload expected is compact, as the complexity 
is in processing of data (feature extraction and classification). This 



also means that the web service interface is straightforward, as it 
is only required to send and receive data. These characteristics 
require only a straightforward web service architecture. 

4. Experimental Implementation – 
Personalized activity monitoring 
In this section, we present an initial implementation of the 
proposed system, and demonstrate many of the anticipated 
benefits obtained.  

4.1 Data Acquisition and Processing 
4.1.1 Data Acquisition 
The data recorded in this implementation are: 6 triaxial 
accelerometer data sets along with activity labels (the sensors are 
located on both wrists and ankles, and both sides of the waist); 
wireless access point MAC addresses and signal strengths; audio 
data time series; and finally context labels. 
Data acquisition not only involves collecting sensor data and 
corresponding annotations, but also includes post-processing 
analysis, where all annotations must be matched with 
corresponding data. Only then are they ready to be used by 
classifiers. While many studies in the area of activity 
classification provide detailed discussions on classifiers and 
features, they do not address the variety of issues related to data 
acquisition required for essential system training. Studies have 
shown a number of factors affecting data acquisition accuracy, 
ranging from end users being severely inconvenienced by the 
equipment they have to carry, to users not being able to record 
properly or meet the annotation demands using traditional pen and 
paper approaches [18-20]. Many solutions also do not scale well 
with increased subject numbers, and both lost and corrupted 
datasets are common due to human error in labeling or inaccurate 
recording. Another problem we observed in large measurement 
campaigns is that many time references for events are recorded 

based on different clock resources, depending on where the 
subject was at the time. These clock resources are mis-
synchronized by more than several minutes with each other, and 
compared to the sensor system time-base. This phenomenon 
dramatically reduces the effectiveness of the labeling process. 

4.1.2 Context and Event Data Acquisition (CEDA) 
System 
We have designed and implemented a complete data acquisition 
and processing system that includes an Android based client and a 
centralized server-hosted labeling tool. Our system is developed 
against Android SDK version 2.2 and the target device may be 
any Android smartphone platform (we used an Archos 32 Internet 
Tablet, which has support for wireless and audio recording). The 
application follows a very simple flowchart with structured 
transitions. This means that all possible user inputs are predefined, 
thus lowering potential annotation errors. 
The Context and Event Data Acquisition (CEDA) System is 
displayed in Figure 4. During training, a user can indicate the start 
of a context or activity by pressing "Start Context" or "Start State" 
respectively (Figure 4a). Once pressed, the user is then prompted 
by a selection list to choose a context or activity (Figure 4b and 
4c).   

4.1.3 CEDA Data Reader 
To interpret the context information gathered from our Android 
application, the data reader need to parse the data into a format 
described by relevant interfaces, namely IContextData and 
IAnnotation. This module can be deployed on the same mobile 
device that runs the acquisition system for local processing, or it 
can be deployed across network. For example, in a server client 
scenario where the data logger simply transmits all data to a 
server for parsing, we would have the CEDA data reader running 
on a server, listening to traffic coming in from the network. 
The IContextData type describes the context information 
collected, and consists of an array of timestamps, sound objects, 
and mapping of wireless MAC addresses and signal strengths. 
This interface is intended for use with a feature extractor 
implementing the IContextFeatureExtractor interface. The 
IAnnotation type simply describes the timestamp and label of 

recorded physical activities. This is used for establishing valid 
segments of accelerometer data to be used in the WHSFT module. 
The CEDA data reader also serves as a filter to sanitize input. 
Some sensor data are corrupted due to memory write errors or low 
battery, and processing is done here to correct those (interpolation 
from previous values for our implementation). 

  
Figure 4 Data logger screenshots 

  a. Main screen b. Context selection c. Activity selection 



4.1.4 Data Labeling 
Once the data are processed, they must be collated and labeled 
according to user annotations. Our implementation includes a 
system that when used in conjunction with the data logger, allows 
us to move from a labeling process that is human intensive to one 
that only requires humans for verification. Because the Android 
application already records the start and end time of activities 
(annotations.txt), we can overlay timestamps on top of sensor 
data. Labeling from there is straightforward, and Figure 5 shows 
the results (activities are identified between black and red lines). 
Now human effort is only needed for quality checking. This 
drastically reduces the amount of time and effort required for 
organizing collected data. 
Using this CEDA system, we have a robust means for supporting 
large campaigns, where users will be given a kit containing an 
Android (or other smartphone) application and sensors. Once a 
user receives the kit, the Android system can guide the user 
through training, and then provide individualized feedback. 
Notifications can also be provided automatically by the same 
system. This is a huge improvement over many current clinical 
trials, where notifications come in the form of phone calls or text 
messages [21]. For activities where the subjects cannot label data 
themselves (e.g. while in sports), a third party can use CEDA 
smartphone device to provide the labeling, and the same benefits 
over traditional approaches apply. 

4.2 Context Detection 
Based on the discussion of features and the choice of classifiers, 
there is a need to use separate classifiers to determine context 
based on different features. In this implementation, the committee 
is made up of 3 classifiers: kNN (k-nearest neighbors) with time 
as a feature; kNN with wireless MAC address and signal strength 
as features; and AdaBoost with audio peak frequency, peak 
energy, average power and total energy as features. These features 
are extracted from raw sensor data through a java program 
implementing the IContextFeatureExtractor interface. 
The k-nearest-neighbors classifier is an instance based learner 
[22]. It is a lazy learner in that no real work is done when the 
training sequence is given during the training phase; they are 
simply stored by the classifier. When an unknown class is 
encountered, the classifier looks for the k nearest training samples 
to the unknown class, and a decision is made based on majority 
vote. Other than implementation simplicity, another major 
advantage of kNN is the ability to handle nominal data through 
custom designed distance functions. This is particularly important 
for data types including, for example wireless MAC address 
values. For our implementation, the kNN with time feature uses a 
simple absolute distance function, and the kNN with wireless 

features uses a custom distance function that looks for the closest 
k labels with overlapping MAC address sets, ranked by signal 
strength. 
AdaBoost is a type of boosting method [23]. It is a meta learner, 
meaning that it is to be used in conjunction with a base learner. 
The base learner can be any classifier, and is usually 
straightforward to implement. They can also be very weak. In the 
binary case, a base learner needs only to outperform chance 
(50%). By forming multiple weak classifiers and weighting them 
on their accuracy, AdaBoost can combine the ensemble into a 
strong classifier. There are many papers describing the operation 
and algorithms of a number of AdaBoost variants [23,24]. For our 
implementation, we used the AdaBoost.MH algorithm with a 
decision stump base learner. AdaBoost.MH is an earlier variant, 
and one of the most popular. It is an extension of the earliest 
multiclass AdaBoost.M1 algorithm. A listing of the 
AdaBoost.MH algorithm can be found in [24]. 

4.3 User Activity Classification Using 
WHSFT 
The Wireless Health Institute at UCLA has developed accurate 
classification methods for user activities under diverse situations 
and clinical settings [1,2,26]. In the process, we have developed a 
sensor fusion and classification toolkit: Wireless Health Institute 
Sensor Fusion Toolkit (WHSFT). It is a toolkit that provides a 
multimodal hierarchical classification system based on the Naive 

Bayes classifier. 

 
Figure 5 Regions of annotated activities 

Starting with raw data from multiple sensors, the WHSFT finds 
overlapping times for all the sensors, and combines streams of 
data into a single structure. Features such as short time energy, 
mean, and variance on three axes of the accelerometer are 
computed from the combined data structure. There are a vast 
number of diverse features providing freedom in selecting features 
that best suit each application.  
From the features, we can then build a hierarchical structure that 
models the classification problem. This is a tree like structure that 
describes the activities we are trying to classify. At each level of 
the tree WHSFT uses a Naive Bayes classifier that separates 
unknown data into one of the branches. Once we reach a leaf 
node, a final classification is made. The personalization benefits 
of the proposed architecture are realized through these 
customizable hierarchical models. For example Figure 6 shows 
the model for "Cafeteria" context described in Table 2. 

4.4 Web Services 
The web service serves as a gateway between the client and server 
for real time classification. It also implements the whole 
automation process. While we only have the real time 
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Table 3 Context guided models 
 Walking Running Walking Upstairs Walking Downstairs Sitting Standing Writing Eating 

Outdoors X X X X     
Cafeteria X    X X  X 

Home X  X X X X   
Class X    X  X  

Meeting X    X X X  
Bus     X X   

 
Table 5 Context guided classification accuracy 

Context Generic Specific Improve Context Generic Specific Improve 
Cafeteria 

Standing 
Walking 
Eating 
Sitting 

 
96.91 
84.81 
1 
100 

 
98.97 
100 
96.77 
100 

 
2 
17 
95.77x 
0 

Meeting 
Sitting 
Walking 
Writing 
Standing 

 
91.67 
97.83 
2.5 
96.84 

 
100 
100 
69.62 
100 

 
9 
2 
28.84x 
3 

Outdoors 
Walking 
Running 
Upstairs 
Downstairs 

 
99.29 
95.79 
90.47 
97.30 

 
99.29 
95.79 
90.47 
97.30 

 
0 
0 
0 
0 

Home 
Sitting 
Standing 
Walking 
Upstairs 
Downstairs 

 
100 
94.12 
98.47 
100 
96.61 

 
100 
100 
96.95 
100 
96.61 

 
0 
6 
-1 
0 
0 

Bus 
Sitting 
Standing 

 
95.94 
81.29 

 
100 
86.33 

 
4 
6 

Class 
Walking 
Sitting 
Writing 

 
98.56 
87.33 
3.66 

 
100 
71.04 
79.41 

 
1 
-20 
20.7x 

The results are broken down by context, as shown in Table 5. The 
"Generic" column shows results from a standard classification tree 
using WHSFT, with all activities built in. The "Specific" column 
shows accuracy from context guided classifiers. All values are in 
percentage unless stated otherwise. 
In nearly all examples, there is a substantial increase in 
classification accuracy resulting from the introduction of context 
guided classification, as a targeted model with fewer activities is 
presented (as opposed to the conventional approach where the 
classifier is presented with all possible activities for selection). In 
the case of writing and eating, a large increase in accuracy can be 
seen, from very limited accuracy for this complex upper body 
activity to acceptable accuracy. Under the class context, there is a 
decrease in accuracy for sitting, however, it is observed that 
classification of writing is available with almost 80% accuracy. 
The selection of new features and structures can further enhance 
accuracy through convenient and straightforward development. 

5.2.3 Context guided Classification Speed 
Context guided classification offers a direct advance in 
computational throughput that offers the possibility of real time 
classification. 
Table 6 shows the computational speed advance that has been 
achieved. In all cases there is a significant increase in 
classification speed. This indicates that context guided 
classification can enable an online system capable of computing 
subject state with the accuracy reported here in real time. Again, 
"Generic" column shows the amount of time (in seconds) required 
to perform a classification with the full model, and "Specific" 
shows the amount of time (in seconds) required for the context 
guided system. "Improve" shows the improvement factor (in 
number of times). 
 
 

Table 6 Speed increase of WHSFT-ca 
 Generic Specific Improve 

Bus 0.119 0.013 9.2x 
Café 0.120 0.044 2.7x 
Class 0.122 0.039 3.1x 

Meeting 0.127 0.058 2.2x 
Outside 0.128 0.033 3.9x 
Home 0.119 0.050 2.4x 

 
5.2.4 Context guided Classification Energy Usage 
Context guided classifier now also offers the capability for 
selecting optimal sensors and schedules for energy and operating 
lifetime benefits.  This also permits a minimum number of sensor 
systems to be selected (for user convenience) while maintaining 
classification accuracy. 
Based on models constructed, we produced the sensor 
requirement chart in Table 7. Blank cells indicate that a sensor can 
be safely turned off without affecting the accuracy for a given 
context. For example, in the case of "Bus" (Figure 8), only the left 
waist sensor is required. 

Table 7 Sensor requirement 

 Left 
Ankle 

Right 
Ankle 

Left 
Waist 

Right 
Waist 

Left 
Wrist 

Right 
Wrist 

Bus   X    
Cafeteria X X X  X X 

Class X   X  X 
Meeting  X X   X 
Outdoors X X  X X  

Home X X X    
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