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Abstract. Many emergent distributed sensing applications need to keep
track of mobile entities across multiple sensor networks connected via an
IP network. To simplify the realization of such applications, we present
MLDS, a Multi-resolution Location Directory Service for tiered sensor
networks. MLDS provides a rich set of spatial query services ranging
from simple queries about entity location, to complex nearest neighbor
queries. Furthermore, MLDS supports multiple query granularities which
allow an application to achieve the desired tradeoff between query ac-
curacy and communication cost. We implemented MLDS on Agimone,
a unified middleware for sensor and IP networks. We then deployed and
evaluated the service on a tiered testbed consisting of tmote nodes and
base stations. Our experimental results show that, when compared to a
centralized approach, MLDS achieves significant savings in communica-
tion cost while still providing a high degree of accuracy, both within a
single sensor network and across multiple sensor networks.

1 Introduction

Many emerging distributed sensing applications require the capability of keeping
track of a large number of mobile entities over a wide area that is covered by
tiered sensor networks. Let’s consider the specific example of co-ordinating doc-
tors over multiple make-shift clinics, set up after a natural calamity. Such clinics
are often short of doctors and so the doctors may move between the various clin-
ics, depending on the need of the clinics. In such a scenario, there is often a need
to keep track of the doctors, as they move within and between clinics, so that
it is possible to find a particular doctor or the nearest available doctor. Existing
infrastructure (e.g. phone lines and cell phone towers) is often destroyed or over-
loaded in such scenarios, requiring the deployment of sensor networks connected
via ad hoc IP networks to achieve the objective. As another example, consider
the tracking of tools that are shared between various workshops spread across a
manufacturing facility. The tools are usually moved around within one or more
workshops by the workers. Hence, it is very difficult to locate a particular tool
when it is needed. In such a situation it would be helpful to keep track of the
location of the tools as they are moved within and across workshops. This would
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allow a worker to easily find the nearest available tool that he needs. Sensor
networks help realize such applications by providing the capability to sense and
identify the mobile entities. However, to fully realize such applications, it is es-
sential to provide a location directory service that can efficiently maintain the
location information of mobile entities as they move across multiple sensor net-
works as well as support a broad range of spatial queries concerning the mobile
entities. Our goal is to realize exactly such a service. The primary contribution
of our work is the design, implementation, and empirical evaluation of MLDS,
the first Multi-resolution Location Directory Service for tiered sensor networks.
The key contributions of our work include (1) Design of MLDS, which efficiently
maintains location information of mobile entities across multiple sensor and IP
networks and supports a rich set of multi-granular spatial queries; (2) Imple-
mentation of MLDS on tiered sensor networks composed of resource constrained
sensor networks and IP networks and (3) Empirical evaluation of MLDS on a
tiered testbed of 45 tmote nodes. Our empirical results show that MLDS can
maintain a high degree of accuracy at low communication cost, both within a
single sensor network and across multiple sensor networks.

2 Services

MLDS can support multiple sensor networks connected by IP networks. Each
sensor network, consisting of stationary location-aware sensor nodes and a base
station, is assumed to have a unique name that maps to the base station’s IP
address. We assume that the sensor networks track mobile entities in the phys-
ical environment using existing tracking algorithms [1–3] or RFID technology.
Furthermore, in our implementation of MLDS, we assume that mobile entities
are represented by mobile agents in the sensor network. A mobile agent is a soft-
ware process that can migrate across nodes while maintaining its state. Mobile
agents present a convenient way of representing mobile entities (e.g. cars, people
and wild fire) in the sensor network [4]. For instance, in the make-shift clinic
example described above, mobile agents may be created to shadow the doctors.
Users can then query the locations of doctors by querying the locations of the
corresponding mobile agents, through MLDS. Note that even though MLDS is
implemented to work with mobile agents, it can be easily extended to work with
other programming models for mobile entity tracking such as EnviroSuite [1]
and others based on message passing [2, 3].
MLDS supports four types of flexible spatial queries that include (i) finding

the location of a particular agent, (ii) finding the location of all agents, (iii) find-
ing the number of agents and (iv) finding the agent that is closest to a particular
location. To meet the needs of diverse applications, all of these queries support
different scopes and granularities that can be specified by the application. MLDS
supports two query scopes, (i) local scope i.e. within a single sensor network and
(ii) global scope i.e. across all sensor networks. It supports three query granular-
ities, fine, coarse and network. The query result of a fine query is based on the
exact locations of the mobile agents while the query result of a coarse query is
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based on the approximate locations of the mobile agents. The query result of a
network query, on the other hand, is based only on the knowledge of the sensor
networks that the agents are in. MLDS supports queries issued from both within
a sensor network and from outside a sensor network (e.g. by an agent or user on
the IP network). The scope and granularity of a query are set via parameters
S and G, respectively. Queries can also be limited to a “class” of mobile agents
through a parameter C. The API of the four spatial queries are as below:

1. GetLocation(id, S, G) returns the location of an agent with ID id.
2. GetNum(C, S) returns the number of class C agents.
3. GetAll(C, S, G) returns the location of all class C agents.
4. GetNearest(C, L, S, G) returns the location of the class C agent that is
closest to the location L.

3 Design

MLDS is designed for common sensor network tracking applications like vehicle
and personnel tracking for security, emergency care etc. Due to the high mobility
of agents in these systems, the location information update rate is expected to be
much higher than the query rate in these systems. Hence, MLDS is specifically
tailored for systems in which the location information update rate is greater
than the query rate. To optimize the operation of such systems, MLDS adopts a
hierarchical architecture with multi-resolution information storage. As a result
(1) it can support multi-granular spatial queries which enables applications to
achieve the desired tradeoff between location information accuracy and com-
munication cost, (2) location information update is not always propagated to
the upper tiers of the hierarchy, which significantly reduces communication cost
and (3) queries are answered at the closest tier of the hierarchy that meets the
query scope and granularity requirements, thus reducing both communication
cost and query latency. Note that while MLDS’ hierarchical directory structure
bears some resemblance to the Domain Name System (DNS) in the Internet
and cellular networks, its novelty lies in the fact that it is specifically designed
and implemented for tiered sensor networks consisting of resource constrained
sensor platforms. In particular, our goal was to minimize communication cost
without considerable loss in data accuracy. Moreover, MLDS provides a rich set
of multi-granular spatial queries, which is not supported by the above systems.

3.1 Architecture

MLDS has a four tiered hierarchical architecture. The topmost tier of the hi-
erarchy is a central registry that stores information about the different sensor
networks. The base stations of the different sensor networks, that are connected
by IP networks, form the second tier of the hierarchy. The other two tiers of
the hierarchy lie within the sensor networks and are formed by a clustering al-
gorithm that groups the sensor nodes into non-overlapping 1-hop clusters. The
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clusterheads of these clusters form the third tier of the hierarchy while the cluster
members form the fourth tier. Note that the system consists of heterogeneous
nodes, with nodes at higher tiers having more resources than nodes at lower
tiers. For example, the clusterheads are resource constrained sensor nodes; the
base stations are more powerful computers such as PCs or stargates; while the
registry, is stored at a server or server cluster.
MLDS stores location information at different resolutions, at different tiers

of the hierarchy. Clusterheads store the exact location of the agents in their
cluster while base stations store only the IDs of the clusters that the agents in
their network belong to. The registry on the other hand stores the IDs of the
networks (denoted by the network base station IP address) that all agents in the
system belong to. A base station also maintains the location of the clusterhead
and the minimum bounding rectangle (MBR) of each cluster in its network.
While the registry also stores the MBR of all the connected sensor networks.
The network and cluster MBRs are needed to answer nearest neighbor queries,
as explained later in Section 3.3.

3.2 Location Information Maintenance

Since MLDS maintains less accurate information at higher tiers of the hierarchy,
location information is not always propagated to the upper tiers, which signif-
icantly reduces communication cost. In the following we describe how MLDS
maintains agent location information at different tiers of the hierarchy.
A node hosting an agent periodically sends location update messages to its

clusterhead, at an interval ∆T . Note, periodic messages are required to maintain
the directory in the face of node/agent failures. The location update messages
contain the agent ID, class and location, which is set to the location of the host
node. When a clusterhead receives a location update message, it first updates
it’s directory with the agent information. If the agent has just entered its cluster,
it then sends a message to the base station containing the agent ID and class,
and it’s own ID, instead of the agent location. The base station in turn updates
its directory on receiving this information and also updates the registry if an
entry for the agent did not exist in its directory, previously.
Agent location information at a clusterhead expires after a period 2∆T . Thus,

if a clusterhead does not receive location update messages from an agent for a
period 2∆T , it assumes that the agent has left its cluster and hence deletes the
agent from its directory. A clusterhead may therefore have stale information for
a maximum period of 2∆T . This design trades off accuracy for lower communi-
cation cost and was preferred over other options that provide higher accuracy
but at a higher communication cost.

3.3 Query Processing

MLDS answers a query at the closest tier of the hierarchy that meets the query
scope and granularity requirements. For queries issued from within(outside) a
sensor network, the closest tier would be the lowest(highest) tier of the hierarchy
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that meets the query scope and granularity requirements. This approach reduces
both communication cost and query latency. All queries issued by an agent from
within a sensor network are first sent to the clusterhead of the cluster that
the agent is in. If the query type is GetLocation or GetNearest, the clusterhead
checks if it can answer the query. If it can, it sends the query reply to the querying
agent, otherwise it forwards the query to the base station. On the other hand,
if the query type is GetAll or GetNum the query is directly forwarded to the
base station. The base station processes the query and sends the reply to the
clusterhead that sent the query, which in turn forwards the reply to the querying
agent. Queries issued by an external agent or user on the IP network are sent to
the relevant base stations that process the queries and route the result back to
the querying agent/user.
We now explain how MLDS processes a query when the query is issued by

an agent within a sensor network. Since a base station processes in-network-
queries the same way that it processes out-of-network-queries, the later process
can be derived from the description of the former, and hence is not explicitly
described. Moreover, due to space limitations, we only describe the GetNearest
and GetLocation query types in detail. The GetNum query is the simplest of
all queries and just involves querying the base station, while the GetAll query
is a simple extension of the GetLocation query. In the following discussion, we
assume that the ID of the querying agent is q. We also assume that for any agent
with ID i, Ci denotes the clusterhead of the cluster that agent i is in and Bi

denotes the base station of the network that agent i is in.

GetLocation When clusterhead Cq receives a GetLocation(id, S, G) query
from agent q, it checks if agent id is in its cluster. If the agent is in its cluster,
it sends a query reply to agent q. If agent id is not in agent q’s cluster, then Cq

forwards the query to the base station Bq. On receiving this query, Bq checks
if agent id is in its network. If the agent is in the network, Bq sends a reply
containing either the location of the clusterhead Cid, if the query is coarse or
the exact location of the agent, which it obtains from Cid, if the query is fine. In
the case that agent id is not in the local network (i.e. Bid 6= Bq), Bq finds out
Bid from the registry, and forwards the query to Bid. Bid processes the query
as explained above and sends the result to Bq. Bq sends the query result to Cq,
which forwards it to agent q.

GetNearest When Cq receives a GetNearest(C, L, S, G) query, it checks if
there are class C agents in its cluster. If there are such agents, Cq finds the
agent that is geographically closest to location L and sends a reply to agent q.
If there are no class C agents in the cluster, Cq forwards the query to Bq.
Let’s first see how Bq handles local queries. If the query is coarse, Bq just

returns the location of the clusterhead, whose cluster contains class C agents
and whose location is geographically closest to location L. However, if the query
is fine, Bq finds the answer by using the branch and bound technique [5]. The
intuition behind this technique is to query only those clusters that contain class
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C agents whose locations could be closest to location L. These clusters are found
by first obtaining a set of clusters that contain class C agents and then looking
at the minimum and maximum distances of the MBRs of the clusters in this
set, from L. Clusters whose minimum distances are greater than the maximum
distance of the cluster that has the least minimum distance, are discarded. Bq

queries the clusterheads of the remaining clusters and waits for a certain time
period to hear from them. When Bq hears from all the clusterheads (before the
end of the time period) or at the end of the time period, Bq computes the agent
that is closest to location L based on the information obtained in the query
replies and sends the reply to Cq. Note that although the MBR of a cluster does
not accurately represent the cluster boundary, it is preferred over other complex
methods like the convex hull due to its low computational complexity.
Bq handles global queries similarly, by first looking up the registry to find

the networks that contain class C agents and then applying the above branch
and bound technique at the network level. Note that by design, this query re-
turns the approximate geographically closest agent. This design achieves lower
communication cost by trading off accuracy.

3.4 Cost Benefits Over A Centralized Directory Approach

In this section we discuss key benefits of MLDS when compared to a centralized
directory (CD) approach. In CD, location information is stored in a centralized
directory maintained at the base stations of the sensor networks. Hence, all
location information and queries in a sensor network are sent to the base station
in CD. MLDS has the following key properties when compared to CD:

– MLDS has significantly lower location update cost, when compared to CD,
especially when agents move locally (within a cluster) most of the time,
which is common in many application scenarios.

– MLDS achieves a lower total communication cost compared to CD when the
location update rate is higher than the query rate. Moreover, for a given
update and query rate, the savings in communication cost increase with
increasing locality of movement and also with increasing network size. Thus,
MLDS is more scalable in comparison to CD.

– Coarse and network query cost in MLDS is close to the query cost in CD.
The cost of fine queries is low, when answered locally (by the clusterhead),
but high otherwise. Thus, applications that can tolerate coarse query results
benefit the most from using MLDS.

A more in-depth theoretical comparison of MLDS and CD can be found in [6].

4 Implementation

We have implemented and integrated MLDS with Agimone, a unified middleware
that integrates sensor and IP networks. In this section, we first give an overview
of Agimone and then describe the implementation details of MLDS.
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Fig. 1. Interaction between MLDS and Agimone modules when the GetLocation(0,
“global”, “coarse”) query is issued by agent 1.(TS: Tuple Space, NL: Neighbor List)

Agimone [7] combines two mobile agent middlewares called Agilla [4] and
Limone [8]. Agilla is optimized for resource-constrained sensor networks and
is implemented in nesC on the TinyOS platform. Limone is designed for more
powerful nodes (e.g. PDAs, stargates and laptops) connected by IP networks
and is implemented in Java on standard Java Virtual Machines (JVMs). In
Agimone, creation and deployment of mobile agents within a sensor network is
done using Agilla, while migration of mobile agents across sensor networks via an
IP network, is done using Limone. Agilla provides primitives for an agent to move
and clone itself from sensor node to sensor node while carrying its code and state,
effectively reprogramming the network. To facilitate inter-agent coordination
within a sensor network, Agilla maintains a local tuple space and neighbor list on
each sensor node. Multiple agents can communicate and coordinate through local
or remote access to tuple spaces. In Agimone, the base stations communicate
through Limone tuple spaces maintained at the base stations. Specific Limone
agents called AgimoneAgents that reside at the base stations provide an interface
between Agilla and Limone and enable the migration of Agilla agents across
an IP network. Agimone maintains a central registry for the registration and
discovery of sensor networks over the IP network.

MLDS is integrated with the Agimone modules that run on the sensor nodes
and base stations. It is implemented in nesC on the sensor nodes and in Java on
the base station. MLDS also extends the Limone registry to serve as the registry
for its location directories. Figure 1 shows the interaction between the MLDS and
Agimone modules at different tiers of the hierarchy when the GetLocation(0,
“global”, “coarse”) query is issued by an agent with ID 1. Agent 1 is in sensor
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network 1 while agent 0 is in sensor network 2, in the figure. Note that the
agents are Agilla agents. Steps 1-3 in the figure show the query message being
propagated up the hierarchy to the base station. Once it reaches the MLDS
module at the base station, control is transfered to the AgimoneAgent (step 4),
since agent 0 is not found in sensor network 1. The AgimoneAgent then queries
the registry to find out which network agent 0 is in (steps 5-6). Once it finds
that out, it sends the query to the AgimoneAgent at the base station in sensor
network 2 (step 7). The AgimoneAgent in base station 2 queries the local MLDS
module to obtain the result of the query (steps 8-9) and sends the result back
to the AgimoneAgent in base station 1 (step 10). The AgimoneAgent in base
station 1 then sends the query reply to the local MLDS module (step 11). After
that, the query reply is forwarded down the hierarchy to agent 1 (steps 12-14).
MLDS adapts Agimone’s sensor-network-discovery and neighborhood-

maintenance mechanisms, to build and maintain its hierarchical structure. The
upper two tiers of the hierarchy are formed via the sensor-network-discovery
process, in which the base stations register themselves with the registry. The
lower two tiers of the hierarchy that lie within individual sensor networks are
formed via a simple clustering algorithm. MLDS uses Agimone’s neighborhood-
maintenance process to achieve clustering at minimum communication cost. Ag-
imone maintains neighborhood information at each node through a periodic
beaconing process. Each node periodically broadcasts beacon messages contain-
ing its ID and hop count to the base station. The hop count information is used
for routing messages to the base station. Details of the clustering algorithm are
left out due to space limitations but can be found in [6].

5 Experimental Results

We evaluated MLDS through two sets of experiments. The first set of experi-
ments compares MLDS’ performance to the centralized approach (CD) within
a single sensor network. Recall that in CD, location information in a sensor
network is stored only at the base station. All location information and queries
are thus sent to the base station in CD. The second set of experiments evaluate
MLDS’ ability to keep track of mobile agents across sensor networks. In both ex-
periments, tmotes were arranged in a grid, with the gateway node at one corner
of the grid. The gateway node is the tmote that acts as a gateway between the
sensor network and the PC which serves as the base station. Multi-hop commu-
nication between the nodes was achieved by setting a filter at the nodes, that
accepted packets only from neighboring nodes on the grid. In order to collect
trace data, all nodes in a sensor network were connected to a PC via USB ports.
We use the following four metrics to evaluate query performance, in our

experiments. (1) Success Ratio: the ratio of the number of queries that returned
the accurate result and the total number of queries issued. Network query results
are considered accurate if they contain the correct network name; coarse query
results are considered accurate if they contain the correct cluster information
and fine query results are considered accurate if they contain the correct agent
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Fig. 2. Performance of local GetLocation queries.

location. (2) Average Error: the average error among all queries for which
a query result is received, in term of hops. Fine query error is computed as
the number of hops between the location returned in the query result and the
actual location of the agent. Coarse and network query error is computed as the
number of hops the agent is from the clusterhead and from the base station,
respectively. (3) Communication Cost includes Location Update Cost and
Query Cost. Location Update Cost is the total number of location information
messages sent per experiment while Query Cost is the total number of query
messages and query result messages sent per experiment. (4) Average Query
Latency: the average query latency among all queries for which a query result is
received. Query latency is the time interval between the issuance of a query and
the arrival of the query result, at the querying node. We present 90% confidence
intervals for both average error and query latency.

5.1 Single Sensor Network

This set of experiments was carried out on a testbed of 24 tmote nodes, arranged
in a 6× 4 grid, with a PC as the base station. In each of these experiments, we
deployed one stationary agent two hops from the gateway, and n (1 ≤ n ≤ 7) mo-
bile agents. The mobile agents were programmed to follow a random movement
pattern over the sensor network at a speed of 1 hop every 5s. Queries were issued
by the stationary agent at the rate of 0.2 queries/s. 200 queries were issued in
each experiment. Note that by varying the number of mobile agents from 1 to 7 in
the experiments, we vary the total location update rate from 0.2 updates/s to 1.4
updates/s and hence evaluate the performance of MLDS under varying network
loads. We evaluate only the performance of the GetLocation and GetNearest
queries in these experiments. Since the GetNum query is the same in both MLDS
and CD by design and the GetAll query is just an extension of the GetLocation
query, we do not evaluate them. We evaluate the performance of the GetLoca-
tion and GetNearest queries, at both fine and coarse granularities, in MLDS.
However, only fine queries are evaluated in the centralized approach since it does
not support coarse queries. We refer to the GetLocation query in the centralized
approach as GL-CD, and the GetLocation fine and coarse queries in MLDS as
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Fig. 3. Communication Cost of local GetLocation queries.

GL-MLDS-Fine and GL-MLDS-Coarse, respectively. Similarly, the GetNearest
queries are referred to as GN-CD, GN-MLDS-Fine and GN-MLDS-Coarse.

GetLocation Query Results Figures 2 and 3 show the results obtained for
the GetLocation query. From Figure 2(a) we see that the success ratio of GL-CD
is higher than that of GL-MLDS-Fine, when there are fewer mobile agents in the
network. GL-MLDS-Fine has a lower success ratio partly because a clusterhead
retains outdated location information of an agent that has left its cluster, for
a maximum time period 2∆T . Interestingly, as the number of mobile agents
increases, the success ratio of GL-CD decreases and approaches that of GL-
MLDS-Fine. This is because, as the number of mobile agents increases, the
number of location information messages also increases. Since all these messages
are sent to the base station in CD, there is an increased number of collisions
and message loss in the network, which lowers the success ratio of GL-CD. In
contrast, the success ratio of GL-MLDS-Fine remains almost constant with the
increase in the number of mobile agents, due to its hierarchical architecture. The
success ratio of GL-MLDS-Coarse is higher than that of GL-MLDS-Fine and only
slightly lower than that of GL-CD. However, since GL-MLDS-Coarse returns an
approximate location, it’s average error is higher than that of GL-MLDS-Fine,
as shown in Figure 2(b). The query reply error of GL-MLDS-Coarse is mostly
1 hop, since MLDS constructs 1-hop clusters. Figure 2(c) displays the query
latencies. As expected, GL-MLDS-Fine has the longest query latency since most
queries and query results of this type take a longer path. The query latencies of
GL-CD and GL-MLDS-Coarse are nearly the same when there are few mobile
agents in the system. However, the query latency of GL-CD becomes higher than
that of GL-MLDS-Coarse when the number of agents increases, as a result of
increased network load.
Figures 3(a), 3(b) and 3(c) show the location update cost, query cost and total

communication cost incurred by the GetLocation queries, respectively. From
Figure 3(a) we see that MLDS achieves about 55% savings in location update
cost when compared to CD. This is due to MLDS’ hierarchical architecture,
by virtue of which, a large number of location information messages are only
sent to the clusterheads and are not forwarded to the base station. Figure 3(b)
shows that the query cost of fine queries is higher in MLDS than in CD. This is
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Fig. 4. Performance of local GetNearest queries.

because GL-MLDS-Fine queries that are routed to the base station, get further
routed to a clusterhead. Likewise, the query results of these queries take a longer
route to reach the querying agent. Comparatively, the query cost of GL-MLDS-
Coarse is much lower and is close to that of GL-CD, since these queries are
routed only up to the base station. Overall, MLDS achieves significantly lower
total communication cost than CD as shown in Figure 3(c). The figure shows
the total communication cost of MLDS normalized by the total communication
cost of CD for varying ratios of total update rate and query rate. Note that the
update rate increases due to the increase in the number of mobile agents in the
system. From the figure, we see that the total communication cost of MLDS is
lower than that of CD even when the update rate is the same as the query rate
and decreases further as the update rate becomes higher than the query rate.

GetNearest Query Results Figure 4 shows the performance of the GetNear-
est queries. From Figure 4(a) we see that the success ratios of GN-MLDS-Fine
and GN-MLDS-Coarse are almost the same, and remain above 80%, irrespective
of the number of mobile agents in the network. The average errors of GN-CD
and GN-MLDS-Fine reflect the same trend as their success ratios, as shown
in Figure 4(b). What is interesting is the trend in the average error of GN-
MLDS-Coarse. The average error of GN-MLDS-Coarse is higher than that of
GN-MLDS-Fine when there are fewer mobile agents in the system. However, it
decreases as the number of mobile agents in the system increases. This trend is
due to the fact that as the number of mobile agents increases, the probability of
a mobile agent being in the same cluster as the querying agent also increases and
so more number of queries are answered directly by the clusterhead of the clus-
ter that the querying agent is in. Thus, with the increase in the agent density,
a higher percentage of the coarse query replies contain exact agent locations,
which in-turn reduces the error.
The query latency of GN-MLDS-Fine is higher than that of GN-CD when

there are few mobile agents in the network, as shown in Figure 4(c). However,
as the number of mobile agents increases, the query latency of GN-CD increases
considerably whereas the query latency of GN-MLDS-Fine decreases. The query
latency of GN-MLDS-Fine becomes less that of GN-CD when there are 7 mobile
agents in the network. The increase in the query latency of GN-CD with the
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increase in the number of mobile agents is a result of increased network load. The
reason for the decrease in query latency of GN-MLDS-Fine, with the increase
in mobile agents in the network, is the increase in the percentage of queries
that get answered locally, by the clusterhead. This same reason also causes the
decrease in the query latency of GN-MLDS-Coarse as the number of mobile
agents in the network increases. Thus, the GN query benefits significantly from
local responses, made possible by MLDS’ hierarchical architecture. The benefit
is not only decreasing query latency but also decreasing query cost (not shown
here), with increasing agent density.

In summary, MLDS consistently achieves success ratios above 80% in all our
experiments, at significantly lower total communication cost than the centralized
approach. In particular, coarse queries supported by MLDS achieved the lowest
communication cost and query latency, while introducing an average error of
less than 1 hop. Thus, applications that can tolerate a small amount of location
error gain the most from using MLDS. Furthermore, MLDS’ hierarchical archi-
tecture enables efficient execution (low cost and latency) of GetNearest queries,
especially when the density of mobile agents is high.

5.2 Multiple Sensor Networks

We now evaluate MLDS’ performance across multiple sensor networks. In these
experiments, mobile agents move between three sensor networks via an IP net-
work running over 100Mbps Ethernet. The IP network is private with a single
Linksys WRT54G router and an 8 port switch. These experiments were carried
out on a testbed of 45 tmote nodes, equally divided into three sensor networks
arranged in a 5 × 3 grid. Each sensor network has a PC connected via USB to
one of its corner motes that serves as a base station. These base station PCs
are connected to each other via the IP network. A fourth PC on the IP network
serves as the registry. Evaluating MLDS’ performance requires comparing its
results with the ground truth. The ground truth is obtained by connecting every
mote except those directly attached to a base station to the registry PC via
USB. The motes are programmed to send trace messages identifying key events
like agent movement and query activities over their USB port. The registry PC
monitors these connections for incoming trace data and saves them into a file.
In addition, it also accepts trace messages over the IP network, which the base
stations use to record trace messages generated by the motes they are attached
to. The registry PC serves as a central aggregation point for the trace data. Each
trace event is time stamped and saved for off-line analysis.
Like the single sensor network experiments, we evaluate only the performance

of the GetLocation (GL) and the GetNearest (GN) queries. Both the network
and coarse granularity versions of the queries are evaluated. In each of these
experiments, the workload is varied by varying the number of mobile agents
in the system from 1 to 21 in increments of 3. The mobile agents move 10
hops randomly in a sensor network before randomly migrating to another sensor
network and repeating. Initially, the mobile agents are distributed evenly across
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Fig. 5. Performance of global GetLocation queries.

the three sensor networks. The GetLocation and GetNearest queries are issued
at a rate of 1 query every 5s by an external agent running on the registry PC.
Note that this differs from the single network experiments where the querier
was located within the sensor network. By placing the querier on the registry,
the query messages only travel down the hierarchy. Scenarios where the query
messages travel up the hierarchy were already evaluated in the single-network
experiments. Each experiment is repeated 100 times.

GetLocation Query Results For these experiments, a querier located on the
registry periodically issues a GL query for a particular mobile agent (termed the
target agent) within the sensor networks. The success ratio of the GL query is
shown in Figure 5(a). Both the coarse (GL-Coarse) and network (GL-Network)
granularity versions of GL achieve nearly perfect success. GL-Coarse has a
slightly lower success ratio because it attempts to return a more accurate lo-
cation of the agent. However, it has approximately 3 times lower error, as shown
in Figure 5(b). Notice that GL-Network has a higher average error variance and
that GL-Coarse has an average error variance of less than one. This is because
an agent may be multiple hops away from the network base station, but can be
at most one hop away from its cluster head. GL-Coarse queries have significantly
longer latency as shown in Figure 5(c). The latency of GL-Network queries is
negligible since the querier is located on the registry and can query the registry
locally to determine which network the target agent is in. For GL-Coarse queries,
the agent must first lookup which network the agent is in, then query that net-
work’s base station to determine which cluster the agent is in. As the number
of mobile agents increases, the latency also increases due to increased network
congestion.

GetNearest Query Results The GN experiments are the same as the GL
experiments except the target agent is a stationary agent that resides two hops
away from the base station on one of the sensor networks. The querier on the
registry periodically searches for the mobile agent closest to the target agent.
The results are shown in Figure 6. As the number of mobile agents increase,
the success ratio of GN-Coarse decreases due to network congestion preventing
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Fig. 6. Performance of global GetNearest queries.

updates from propagating up the hierarchy, as shown in Figure 6(a). On the
other hand, GN-Network queries almost always succeed since it involves at most
1 call to the registry. The average error of GN-Coarse queries remains roughly
less than 1 hop regardless of the number of agents as shown in Figure 6(b). This is
expected since the cluster members are at most 1 hop away from the cluster head.
The average error of GN-Network queries is also close to 1, but is dependent on
the size of the network. As the number of mobile agents increase, the probability
of finding an agent in the same network as the target increases, decreasing the
latency of GN-Coarse queries, as shown in Figure 6(c). The latency of GN-
Network queries is negligible because in our experiments, an agent is always
present in the target agent’s network and hence the queries are always answered
locally by the base station.

6 Related Work

MLDS is related to data-centric storage (DCS) systems like GHT [9], DIFS [10],
DIMENSIONS [11] and DIM [12]. GHT hashes data by name to nodes in the
network and provides no index for accessing the data. Hence it is unsuitable for
storing and accessing location information. DIFS leverages on GHT and main-
tains a hierarchical index of histograms to support multi-range queries. DIM,
on the other hand, uses a locality-preserving hash function that maps a multi-
attribute event to a geographic zone. It divides the network into zones and main-
tains a zone tree to resolve multi-dimensional range queries. However, the index
of neither DIF nor DIM can efficiently support spatial queries. DIMENSIONS
hashes sensor data to nodes in the network and maintains a multi-resolution
hierarchical index that enables it to efficiently answer queries by drilling down
to the appropriate nodes. However, DIMENSIONS was not designed for storing
location information and hence does not support spatial queries such as GetN-
earest. Thus, the key differences between the above systems and MLDS are (1)
the above systems store sensor data while MLDS is specifically tailored for stor-
ing location information of mobile entities, (2) MLDS supports a broad range of
flexible spatial queries which cannot be supported efficiently by the above sys-
tems, and (3) MLDS builds a distributed directory over multiple sensor networks
connected by an IP network, while the above systems systems are designed for
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a single sensor network. TSAR [13] is another in-network storage architecture,
which stores sensor data at a lower tier consisting of sensor nodes and stores
only meta data at a higher tier consisting of a network of proxies. Unlike the
above approaches, TSAR maintains a distributed index at the proxies. TSAR
differs from MLDS in that it is not tailored for storing location information nor
does it support spatial queries. Moreover, unlike MLDS, TSAR does not have
an in-network tier that enables the system to take advantage of data locality
while resolving queries. The comb-needle approach proposed in [14] also deals
with in-network storage and retrieval of data and uses an adaptive push-pull
technique to achieve this. Unlike MLDS, this approach does not maintain data
locality and hence cannot efficiently support spatial queries. An analysis of this
approach to other DCS approaches has been provided in [15].
Our work is also related to the protocols presented in [16] and [17], which

address in-network processing of K-Nearest Neighbor (KNN) queries and are
based on the branch-and-bound technique [5] which is also used in MLDS. An-
other related service is EASE [18], which keeps track of mobile entities within a
single sensor network through in-network storage and supports multi-precision
queries that fetch the location of a specified mobile entity. MLDS differs from
the above protocols in the following three important ways: (1) MLDS presents
an architecture for storing location information in sensor networks that enables
efficient computation of nearest-neighbor as well as other multi-resolution spa-
tial queries, (2) MLDS is the first location directory service that can keep track
of mobile entities across multiple sensor networks, and (3) we implemented and
integrated MLDS with a mobile agent middleware and present experimental re-
sults on a physical testbed. In contrast, the above protocols are only evaluated
through simulations.

7 Conclusion

We have developed MLDS, a Multi-resolution Location Directory Service for
tiered sensor networks comprising multiple sensor networks connected via IP
networks. MLDS has several salient features: (1) it is the first system that main-
tains location information of mobile entities across sensor and IP networks, (2) it
supports a range of multi-granular spatial queries that can span multiple sensor
networks and (3) it has low communication cost. We integrated MLDS with Ag-
imone, a mobile agent middleware for sensor and IP networks, and evaluated its
performance on a testbed of tmote nodes. The empirical results obtained show
that MLDS successfully keeps track of mobile agents across single and multi-
ple sensor networks at significantly lower communication cost than a centralized
approach. Most importantly, MLDS enables applications to achieve the desired
tradeoff between accuracy and communication cost, which is particularly use-
ful for resource constrained sensor networks. Currently, MLDS is optimized for
systems that have a higher location update rate. As future work, we plan to
extend MLDS such that it dynamically adapts to the query and the update rate
and hence performs well under all conditions. We wish to achieve this by using
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a push-pull strategy that dynamically adjusts the location and granularity of
location information based on the query and update load.
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