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Edge Computing for Industrial Control ool

Edge computing and wireless networks are not ready for control!

Industrial control requires

» Control performance
»~ Stability
» Resiliency R\

Controller




Two=Tier Control Architecture

» Tradeoff between computing tiers
O Local control: network reliability

O Edge control: computation capacity

» Control performance depends on
wireless reliability at run time

» Local control guarantees stability
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System Model

with the plant =2
No data loss =2

v { Wireless network—>
Varying data loss
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Safety Controller .
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Platforms Local Edge
Raspberry Pi 3 (4 Intel Server (4 Intel
Computation ARMvV7 CPUs@ 900 | Core 15-4590 CPUs@
MHz, 1G RAM) 3.3 GHz, 16 G RAM)
Communication | I/O + Ethernet cable VO + Wi-Fi +
University network
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Switching Agent

Q=
Edge Cloud

Larger computation capacity =
Sophisticated control algorithm




Case Study: Tradeoff between Local and Edge Control s

Robotic joint position control

Control performance metric
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Edge may improve control performance

Edge may also suffer from data loss
O Lose performance
O Lose stability

Control performance depends on
O control policy
O network reliability

O physical plant states




Switching Multi-tier Control: Objectives

Switching Multi-tier Control (SMC)

network
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» Dynamically switch between local and edge
controllers

O to optimize control performance

O while guaranteeing stability

based on physical states and network reliability

A
r RIB

\ /i
5 7



CPSL ¢

Cyber-Physical \z

Contributions s W)

Switching Multi-tier Control (SMC): edge computing for control
Switching architecture

O Optimal Platform Classifier: data-driven approaches to select optimal computing tiers

3 Stability Switch: extend Simplex to multi-tier architecture

Hybrid simulator:WCPS-EC

3 real computing platforms + real/simulated wireless networks+ simulated plants

Robotic control case study




Switching Logic of SMC

Recovery
Region (RR)

Performance
Region (PR)

X

Optimal control platform

Stability can be applied

cannot be
guaranteed

d
The Stability Switch guarantees stability

Simplex Framework
Sha, L., Using simplicity to control
complexity. |IEEE Software, (4),2001

Switching Logic:

Physical Conditions
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A
Local
Control
Edge Optimal Platform
Control o~ Boundary (OPB)
>

Network Conditions

The Optimal Platform Classifier (OPC)
selects the optimal control platform

ﬂ

X € PR: OPC selects the optimal controller based on network
conditions and physical states

x & PR:switch to local controller to guarantee stability
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Select Optimal Controller through Data-driven Approach Jomrmies

» Theoretical analyses of control performance over various control systems and
network characteristics are challenging

» Learning-based OPC

Physical
Conditions
Optimal
Platform

Classifier

Network
Conditions

v" Overcome restrictions of analytical modeling

v" Applicable to wide range of control techniques ~159)
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Training Data for Optimal Platform Classifier s Ui €
. o

» Physical plant: PUMA 560 | a 1-B
» Local: state feedback controller ‘@ Reception
» Edge: model predictive controller
> Wi : - i p

Wireless network: two-state Markov chain loss model The Gilbert-Elliatt loss link model

Physical
Conditions Xe (state etror)

. Local Control
Optlmal /. ocal Contro

Network

Platform
Conditions 4 Classifier Edge Control

» Training dataset
126,000 simulations, 40 GB data

J Simulation interval (coordination period, prediction horizon): T, =15 s

11/23/20 N %
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Each data point represents a simulation run

Label each data point with the optimal controller

O When x, and B are low, and a is high, edge
control has smaller MAE

Training a model to classify optimal controller

Optimal platform labeling

10"
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Optimal Platform Classifier

Local
* Edge

> Missclassified When x, and f are low, and a is high, OPC
chooses edge control

SVM model learns the non-linear boundary
between the controllers

O Training accuracy in 10-fold cross validation:
91.72%

O Testing accuracy: 90.98%

SVM OPC
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WCPS-EC
Wireless Cyber-Physical Simulator — Edge Computing

Local/Edge/Cloud Platforms Controller Side
yt ° . ut 9
Network States >| Holistic Controller Network/Computing
configurations

A
|
|
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Wired/Wireless Newtorks

h Sensors

<«— Plant

~>

<«——— Actuators [«—

Simulink Desktop Real-Time

Physical Plant Side
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Hybrid simulations of multi-tier control

Local/edge/cloud computing platforms

Real/simulated networks
O WiFi
0 |EEE 802.15.4 (TOSSIM)

Simulated physical plants (Simulink)

12 7/
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» Joint position control facing network loss Coordination period (Tc): 10s
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Evaluation of SMC
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SMC (Tc:5s) SMC (10s) SMC (15s) SMC (20s)  Local Edge

SMC provides over 30% and 40% control performance improvements compared with
fixed local and edge control, respectively

When T, is short, OPC is trained based on data in transient states only

2 ol | :‘

When T, is long, OPC cannot react to frequently changing network conditions in thﬂf
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Conclusions  Spererscal ()

Edge computing leads to a two-tier control architecture

O Platforms with different computation capacities and communication reliability

Switching Multi-tier Control (SMC) optimizes performance with stability guarantees
A Data-driven Optimal Performance Classifier = optimize control performance
Q Stability Switch = guarantee system stability

Case study: robotic control implemented in WCPS-EC
a SMC outperforms local and edge control
O while maintaining stability
under changing network reliability
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